• Title/Summary/Keyword: Material modelling

Search Result 392, Processing Time 0.025 seconds

Modelling and Analysis of AFPM, RFPM Compound Generator (AFPM, RFPM 복합발전기의 모델링 및 해석)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.459-462
    • /
    • 2017
  • In this study, we design, model, and analyze a compound generator that combines the axial flux permanent magnet (AFPM,) and radial flux permanent magnet (RFPM), which is expected to increase power generation by allowing the magnets to be placed on the upper, lower, left, and right sides of the same-sized generator. Through the design, modelling, and analysis of AFPM and RFPM compound generators, the generator load evaluation results rated output of 500.25 W and efficiency of 87.60%, respectively, at a rated speed of 600 rpm. By employing this complex generation system,these findings are expected to contribute to the activation of a small power generation system.

Numerical modelling of soil-foundation interaction by a new non-linear macro-element

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.377-386
    • /
    • 2018
  • This paper focuses on the development of a new non-linear macro-element for the modelling of soil-foundation interaction. Material and geometrical nonlinearities (soil yielding and foundation uplift respectively) are taken into account in the present macro-element to examine the response of shallow foundations under monotonic and cyclic loads. Several applications of soil-foundation systems are studied. The results obtained from these applications are in very favourable agreement with those obtained through other numerical models in the literature.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

A STUDY ON THE DIMENSIONAL ACCURACY OF MODELS USING 3-DIMENSIONAL COMPUTER TOMOGRAPHY AND 2 RAPID PROTOTYPING METHODS

  • Cho Lee-Ra;Park Chan-Jin;Park In-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.633-640
    • /
    • 2001
  • Statement of problem. Relatively low success rate of root analogue implant system was supposed to be due to the time duration between extraction and implant installation. The use of three-dimensional computer tomography and the reconstruction of objects using rapid prototyping methods would be helpful to shorten this time. Purpose. This aim of this study was to evaluate the application possibility of the 3-dimensional computer tomography and the rapid prototyping to root analogue implants. Material and methods. Ten single rooted teeth were prepared. Width and height of the teeth were measured by the marking points. This was followed by CT scanning, data conversion and rapid prototyping model fabrication. 2 methods were used; fused deposition modelling and stereolithography. Same width and height of this models were measured and compared to the original tooth. Results. Fused deposition modelling showed an enlarged width and reduced height. The stereolithography showed more exact data compared with the fused deposition modelling. Smaller standard deviation were recorded in the stereolithographic method. Overall width error from tooth to rapid prototyping was 7.15% in fused deposition modelling and 0.2% in stereolithography. Overall height showed the tendency of reducing dimensions. Conclusion. From the results of this study, stereolithography seems to be very predictable method of fabricating root analogue implant.

  • PDF

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Parameter Extraction for Optimum Design of Low Noise GaAs MESFET (저잡음 GaAs MESFET의 최적화 설계를 위한 파라미터 추출)

  • 이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.3
    • /
    • pp.65-76
    • /
    • 1992
  • An algorithm to determine the optimum nominal value of geometrical and material parameters in divice modelling is proposed. The algorithm uses the yield and variance prediction formula and Monte-Carlo analysis. The performance specification of the noise figure must also be satisfied. In this paper, the total number of considered devices is 1000, and each parameter of geometrical and material parameters is generated randomly within the limits of ${\pm}3%$ of nominal value, and the distribution of 1000 geometrical and material parameters is gaussing distribution.

  • PDF

Computational Modeling of Charge-Discharge Characteristics of Lithium-Ion Batteries (리튬이온 전지의 충방전 특성에 대한 전산 모델링)

  • Lee, Dae-Hyun;Yoon, Do-Young
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.278-285
    • /
    • 2011
  • Computational modelling and simulation for the charge-discharge characteristics of Lithium-ion batteries have been carried out. The battery system consists of a simplified 2-dimensional single cell for the modelling, in which the thermal modelling on the charge-discharge characteristics was conducted in the temperature range from 288 K through 318 K by using FEMLAB as an engineering PDE solver. While material parameters adopted in the present modelling were dependent on the system temperature, their thermal modelling were applied on the simulations of the charge-discharge period and the rate of transferring charges systematically. The resulting simulation shows that the cycle of the charge-discharge shorten itself by reducing the system temperature, regardless of the charge-discharge rates. In addition, the mass-transport phenomena of Lithium ion have been discussed in connection with the charge-discharge characteristics in the battery.

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

A Study on the Acoustic Performance Design Technique of Underwater Acoustic Material (수중 음향재료의 음향성능 설계기법 연구)

  • Seo, Youngsoo;Ham, Ilbae;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.920-927
    • /
    • 2013
  • The requirement of acoustic performance about underwater acoustic material which is used in underwater environment more increases. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. In order to increase an acoustic performance, several kinds of inclusions were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques were introduced and the acoustic characteristics of underwater acoustic material were studied. Echo reduction and transmission loss were calculated with volume fraction of inclusion in the material. Also the characteristic impedance and the input impedance of underwater acoustic material were obtained and effects on the echo reduction and transmission loss of material were discussed.

A Study on the Acoustic Properties of Porous Material by Using Acoustic Transfer Matrix (전달행렬법에 의한 다공질 흡음재의 음향특성 연구)

  • 박철희;주재만;염창훈
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.635-644
    • /
    • 1996
  • In this paper, Allard's modelling method which employs the method of acoustic transfer matrix(ATM) is applied to yield more precise results in the analysis of porous sound absorbing material. The method of ATM, based on Biot's theory, is known to play an important role in the estimation of the sound absorption when a sound projects onto the material. In the case of a single layered porous sound absorbing material, the surface impedance and the absorption coefficient by using the method of ATM are estimated. With the variation of the material properties, sound absorption characteristics and analyzed. Transmission Loss in a combination of the porous sound absorbing material with a thin plate is predicted.

  • PDF