• Title/Summary/Keyword: Material mixing method

검색결과 387건 처리시간 0.029초

Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality (3D 프린터용 시멘트 복합체의 배합요인에 따른 출력 품질의 실험적 평가)

  • Seo, Ji-Seok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제26권1호
    • /
    • pp.89-96
    • /
    • 2022
  • In this paper, to evaluate the output quality of the cementitious composite mixture for printing with the ME method for construction 3D printer, visual inspection of the output appearance and the dimensional error rate, compressive strength and flexural strength of the output were measured. As a result of the test, the mixing design with excellent output appearance was P1-2, P1-4, P2-5, P2-6, and the mixing design with good output appearance was P0-1, P1-1, P1-3, P1-6, P1-7 and P2-4. Of these mixing designs, P0-1 and P2-6 had the lowest dimensional error rates As a result of evaluating the compressive strength and flexural strength of the various mixing designs, the Mixing design with excellent output designs showed good mechnical properties. However, mixing designs with excellent mechanical properties does not necessarily have excellent output quality. Therefore, in order to accurately evaluate the output quality, it is judged that visual inspection and dimensional error rate inspection should be performed first, and then the mechanical characteristics should be reviewed.

The Effect of the Mixing Order on PVA Fiber-Reinforced Cementitious Composites with CNTs (CNT 혼입 PVA 섬유보강 시멘트 복합체에서의 배합 순서에 따른 영향)

  • Seong-Hyun Park;Dongmin Lee;Seong-Cheol Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제11권2호
    • /
    • pp.130-137
    • /
    • 2023
  • This study analyzed the effect of mixing order on the flowability, compressive strength, and flexural strength of cement composites reinforced with polyvinyl alcohol(PVA) fibers and multi-walled carbon nanotubes(MWCNTs). The experimental results showed that the addition of CNTs significantly reduced the flowability, and the flowability was considerably affected by the mixing order when CNTs were added. The compressive strength was most effectively improved when water and CNTs solution were mixed first before adding PVA fibers, and the flexural strength was highest when water and CNTs solution were mixed with PVA fibers after dry mixing. However, there was no clear correlation between the flexural toughness and the mixing order. In addition, scanning electron microscopy(SEM) image analysis was conducted to analyze the microstructure. The SEM images showed that CNTs were randomly dispersed through the specimens and contributed to the strength improvement, but the effect of the mixing order was not clearly observed. The main results of this study are expected to be useful for evaluations of workability and material performance of PVA fiber-reinforced cement composites with CNTs.

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • 제4권1호
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • 제7권6호
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

Properties of High Strength Recycled Aggregate Concrete (고강도 영역의 재생골재 콘크리트의 물리적 특성)

  • 이세현;서치호
    • Journal of the Korea Concrete Institute
    • /
    • 제13권6호
    • /
    • pp.575-583
    • /
    • 2001
  • The purpose of this study is to present the method of utilizing the recycled aggregate that are obtained from waste concrete as the concrete aggregate. We manufactured the recycled aggregate concrete with compressive strength of over 300kgf/㎠ to increase its weaker strength than the normal concrete, and compared the physical features of the recycled aggregate concrete with that of the normal concrete. As a result of the study, the mechanical performances such as compressive and tensile strength were generally reduced as the mixing rate of the recycled aggregate increased; however, it was possible to manufacture the concrete with the compressive strength of 300∼600kgf/㎠ using the adequate mixing material such as unit quantity of cement, compounding water and silicafume. However, a continuous study on long-term durability performance is required to manufacture and utilize the recycled aggregate concrete for the structure.

A Study on High Temperature Fracture Behavior of Plasma Sprayed Zirconia/ NiCrAlY Coating System (지르코니아 /NiCrAlY 계 플라즈마 용사피막의 고온 파괴거동에 관한 연구)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제20권10호
    • /
    • pp.3234-3242
    • /
    • 1996
  • This paper describes experimental results of modified small punch( MSP) test conducted to evaluate the fracure characteristics and mechanical properties of plasma sparayed zirconia ($ZrO_2$ stabilized with 8wt. % $Y_20_3$ : YSZ) NiCrAlY composite. The mixing ratios of YSZ/NiCrAlY were 0/100, 25/75, 50/50, 100/0 v.%. Test temperatures ranged from 293K to 1473K. This study is directed at development of thermal barrrier coating(TBC) system with superior heat resistance and mechanical properties. The microstructure and fracture process of the composite were examined by SEM and AE method. The mechanical properties of 100% YSZ were nearly independent of the temperatures tested in this study. In contrast, the NiCrAlY-containing composites showed a significant decrease of the mechanical properties above 1273K, showing a ductile- brittle transition behavior up to the temperature. Furthermore, it can seen that 25% YSZ/75% NiCrAlY composite gave the highest fracure strength and fracture energy among the mixing ratio tested over the temperature range.

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • 제26권5호
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • 제37권4호
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

Reliability Analysis of Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 신뢰성 해석)

  • 유한신;곽계환;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.479-486
    • /
    • 2004
  • The purpose of this study is to practical use with increase safety, usablility and economical. In this study, the property of fatigue behavior was tested by comparing reinforced concrete and steel fiber reinforced concrete. The basic test, the static test and fatigue test were used as the research methods. Basic on the test, the material compressive strength test and split tensile strength test ware conducted 7 days and 28 days after the concrete was poured. In the static test, there ware four types of experimental variables of the steel fiber mixing ratio : 0.00%, 0.75%, 1.00%, and 1.25%. The ultimate load initial diagonal tension crack, and initial load of flexural cracking were all observed by static test. A methodology for the probabilistic assement of steel fiber reinforced concrete(SFRC) which takes into account material variability, confinement model uncertainty and the uncertainty in local and globa failure criteria is applied for the derivation of vulnerability curves for the serviceability and ultimate limit states, the reliability of SFRC using the proposed practical linear limit state model is evaluated by using the AFOSM(Advanced First Order Second Moment) method and MCS(monte-Calrosimulation) method.

  • PDF