• Title/Summary/Keyword: Material flow automation

Search Result 24, Processing Time 0.024 seconds

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

A Study on Rolling Mill Dynamics Model and Automatic Gauge Control System

  • Kim, Tae-Young;Kwon, Dae-Hyun;Choi, Won-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.120-125
    • /
    • 2004
  • In the rolling of steel or non-steel metal the most important quality aspect are thickness and flatness. In thickness, there are two important factors. One of them is getting close with accurate goal, nominal gauge, the other is minimize gauge bandwidth, the variation in gauge. In this thesis, we proposed the fuzzy model AGC to minimize gauge variation along the length, developed the rolling mill dynamic model using the math mode of the rolling mill process and the rolling model related with the variety character of the rolling material. We compared the gauge control efficiency of fuzzy model AGC and PI mass flow AGC. We have got a simulation result, that the exit gauge variation of PI mass flow AGC was 2 micron and fuzzy model AGC was 1.2 micron at 1200mpm of rolling speed when each controller was rolling 5 micron of material that is the entry gauge variation.

  • PDF

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

Electrical Breakdown characteristics of $LN_2$ under simulated Quenching conditions for application of HTS apparatus (고온초전도 기기응용을 위한 모의 퀜치 환경에서 액체질소의 절연파괴 특성)

  • Baek, Seung-Myeong;Jung, Jong-Man;Lee, Joung-Won;Kwag, Dong-Soon;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.187-191
    • /
    • 2002
  • The characteristics of Electrical breakdown liquid nitrogen($LN_2$) were studied under simulated Quenching conditions for application of HTS apparatus. The experimental results for various quench condition revealed that the breakdown voltage of $LN_2$ with bubble flow velocity and gap spacing, Also, it did a electric field and potential distribution interpreting at the liquid nitrogen when the bubble existed, The plots of equipotential lines for three cases are also shown.

  • PDF

Preliminary design of a production automation framework for a pyroprocessing facility

  • Shin, Moonsoo;Ryu, Dongseok;Han, Jonghui;Kim, Kiho;Son, Young-Jun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.478-487
    • /
    • 2018
  • Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided.

The Status of Material Handling Industry and the Scheme of Development (운반하역기계 산업의 현황과 발전 방안)

  • 신용하;조영준;손병진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.1-11
    • /
    • 1992
  • Material Handling equipments such as hoists, cranes, storage and retrieval machines, gantry robots and conveyors are carrying out more important tasks in material flow automation field. This paper is concerned with the characteristic and the position of this industry, and presents the status of the business world scale, supply and demmand. import and export transition, and directing posts of the profits. Also it gives productivity security and activity.

  • PDF

A Shaving Shear-Welding Process for Overlapped Aluminum Plates (중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구)

  • Shang, L.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.

COMPUTER AIDED SCHECULING MODEL OF MATERIALS HANDSLING IN CHEMICAL ANALYSIS FLOOR

  • Fujino, Yoshikazu;Motomatu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.31-34
    • /
    • 1995
  • The automated chemical analysis shop floor are developed for the environmental pollution problems in our chemical analysis center. This shop floor have the several equipments include weight, pour, dry, heater, boiler, mixture, spectroscopy etc. And the material handling components are made up by the stored stack, conveyore, turntables, robot etc. Computer simulation has been an important tool for these complete design problem. We have designed the arangement of chemical equipments and material flow systems by using the simulator "AutoModII". "AutoMoII" is one of the advanced simulator, CAD-like drawing tools with a powerful, engineering oriented language to model control logic and material flow. The result is the modeling of the chemical analysis system in accurate, three dimensional detail. We could designed the set able layout and scheduling system by using the AutoMoII simulator. AutoMoII simulator.

  • PDF

Analysis of Key Performance Index for Advanced Logistics (물류산업의 선진화를 위한 성과지표 분석: IT서비스를 중심으로)

  • Jang, Hee-Seon
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In this paper, the key performance index for advanced logistics is analyzed, and the specific requirements for the material flow IT services are proposed to improve the world competitiveness of the material flow industries and to implement the advanced logistics in Korea by survey research. The key performance index is classified into three types of efficiency, sustainability and economics, and two classes of enterprise and public for IT services are proposed. In addition to, for case studies, the survey analysis for the Pyeongtaek Port is performed to diagnose the material flow enterprise and to analyze the priorities of the IT services for Port's employee, trade enterprise, public service personnel, and local resident. From the results, to improve the productivity and efficiency of the enterprise, the secure the professional man-power and standardization are needed, and the automation, u-Port, green technology and material flow security for the IT services are required.

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics (고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구)

  • Hong, Ter-Ki;Seo, Dong-Pyo;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.