• 제목/요약/키워드: Material design parameter

검색결과 408건 처리시간 0.027초

전동차용 방진고무스프링 특성 및 사용수명 예측 (Characteristics and Useful Life Prediction of Rubber Spring for Railway Vehicle)

  • 우창수;박현성;박동철
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.211-216
    • /
    • 2007
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

자동차용 알루미늄 합금 휠의 진동특성에 관한 실험적 연구 (An Experimental Study on Vibration Characteristics of AI-alloy Wheel for Passenger Car)

  • 김병삼;지창헌;문상돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.623-628
    • /
    • 2001
  • The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

  • PDF

실험계획법을 이용한 필라멘트 와인딩 공정변수에 대한 연구 (A Study on the Processing Parameters of Filament Winding with Design of Experiment)

  • 최창근;이중희;김병선;김병하;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.208-211
    • /
    • 2000
  • Processing parameters of filament winding were investigated by using design of experiment. To understand 4 main effects(fiber tension, impregnation pressure, processing rate, and temperature) and 3 interactions, $L_{27}(3^{13})$ orthogonal array table was adopted. The used materials were carbon fiber and epoxy resin. Split disk test and short-beam test, which are the general test methods for filament wound composite material, were selected as evaluation methods for a filament would part. The optimal processing parameters for the filament winding were easily found through the analysis of variance of the experimental results.

  • PDF

자기부상열차용 편측식 선형 유도전동기의 설계특성 검토 (Investigation of Design Parameters of Single Sided Linear Induction Motor for MAGLEV)

  • 박영호;최열준;김정철;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2005
  • Linear metro with single sided linear induction motor is applied to the urban transit system because of non adhesion drive. But linear induction motor is required to reduce the energy consumption to maximize efficiency of LIM. In this paper, design requirements such as pole pitch, motor length, air gap, overhang length and the material of secondary sheet are investigated as major parameter of SLIM. It is effective for increasing the efficiency to adopt the copper reaction plate and decrease the mechanical air gap as small as possible.

  • PDF

리드프레임의 전단용 금형에 대한 3차원 FEM 해석 (3-Dimensional Finite Element Method Analysis of Blanking Die for Lead Frame)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.61-65
    • /
    • 2011
  • The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile. In this study, three dimensional finite element analysis is carried out to design a lead frame blanking die using LS-Dyna3D package. After design of the blanking die, an experiment is also carried out to investigate the characteristics of blanking for nickel alloy Alloy42, a kind of IC lead frame material. In this paper, it has been researched the investigation to examine the influence of process parameters such as clearance and air cylinder pressure on the accuracy of sheared plane. Through the experiment results, it is shown that the quality of sheared plane is less affected by clearance and air cylinder pressure.

Evaluation of Characteristics and Useful Life of Rubber Spring for Railway Vehicle

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • International Journal of Railway
    • /
    • 제1권3호
    • /
    • pp.122-127
    • /
    • 2008
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

  • PDF

Thickness-Vibration-Mode Piezoelectric Transformer for Power Converter

  • Su-Ho lee;Yoo, Ju-Hyun;Yoon, H.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권3호
    • /
    • pp.1-5
    • /
    • 2000
  • This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulation power supplies. This piezoelectric transformer operate in the second thickness resonant vibration mode. Accordingly its resonant frequency is higher than 1 NHz, Because output power is low if input and output part of transformer are consisted of single layer, this research suggests a new method, which is consisted of both input and output part of transformer have 2-layered piezoelectric ceramics, The size of transformer is 20 mm in width and length, and 1.4 mm in thickness, respectively, To design a high efficient switching circuit of the transformer, internal circuit parameters were measured and then weve calculated a parameter of inductor nd capacitor to design a driving circuit, Weve used a MISFET and its driver circuit modified a calp oscillator circuit as the primary switching circuit.

  • PDF

전달 일률 계수 최대화를 위한 1차원 도파관 형상 설계 (One-dimensional Waveguides Shape Design far Transmission Power Coefficient Maximization)

  • 이일규;이중석;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.481-482
    • /
    • 2008
  • This investigation presents a method to design an optimal shape of a matching waveguide connecting two waveguides having different impedances. The design objective is to maximize power transmission through the waveguide system. When an incident wave impinges on an elastic waveguide system consisting of waveguides of different impedances, all of the incident wave power may not pass through due to the mechanical impedance. Therefore, the maximization of the transmitted power through a waveguide difficult to achieve without a systematic design method. In this work, the optimal shape design of a matching waveguide connecting two waveguides of different impedances is formulated as a shape optimization problem. If the material of the matching waveguide is given, its shape is the only parameter controlling the transmission power. Relatively simple one dimensional elastic wave transmission problems will be considered in this work, but the underlying methodology and the related physics can be clearly demonstrated. The influences of initial configurations as well as the target frequencies on the optimized shapes will be also investigated.

  • PDF

변수 변경 및 재료적 특성에 따른 철골 구조물의 탄소 배출량 절감 효과 분석 (The Effect Analysis of Reducing Carbon Emission by Design Parameter Change and Material Properties)

  • 송창현;장아름;주영규
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.105-113
    • /
    • 2023
  • The study used the whole-life carbon assessment method to conduct a thorough carbon-neutral evaluation of a standard steel structure. To further assess carbon emissions, 11 design-changed models were evaluated, with changes made to the span between beams and columns. The results of the carbon emission assessment showed savings of approximately 13.1% by implementing the stage of the beyond life cycle. Additionally, the evaluation of carbon emissions through design changes revealed a difference of up to 42.2%. These findings confirmed that recycling and structural design changes can significantly reduce carbon emissions by up to 48.6%, making it an effective means of achieving carbon neutrality. It is therefore necessary to apply the stage of beyond life cycle and structural change to reduce carbon emissions.

강종에 따른 종방향 필릿용접부 공칭강도 계산식의 제안 (Proposal of Estimation Equation for Nominal Strength of Longitudinal Fillet Welds with Different Types of Steel)

  • 조재병;이혜영
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.503-510
    • /
    • 2012
  • 최근 고성능, 고강도 강재가 개발되어 강구조물에 많이 사용되고 있다. 새로 개발된 고강도 구조용 강재는 일반적인 강도의 강재에 비하여 인성, 용접성, 항복강도비 등이 다르므로 필릿용접부에 대해 기존 설계기준의 적용 타당성을 검토할 필요가 있다. 국내외의 설계기준에 따른 필릿용접부의 공칭강도 값을 비교한 결과 상당한 차이가 있음을 확인하였다. 필릿용접부 강도시험 결과를 수집 분석하였다. 필릿용접의 강도를 결정하는 주요변수로 모재의 항복강도와 인장강도, 그리고 용접금속의 인장강도를 각각 선택하여 강도 추정식을 도출하였다. 공칭강도 추정식을 사용하여 각 강종별로 구한 계산 값은, 선택한 주요변수의 종류와 관계없이 거의 동일한 것으로 나타났다. 필릿용접부의 거동특성과 설계의 실용성을 고려하여 모재의 인장강도를 기준으로 공칭강도를 산정하는 것이 좋을 것으로 판단된다. 제안된 공칭강도와 비교한 결과 기존의 설계기준에 따른 필릿용접부의 공칭강도는 낮은 강도의 강재에 대해서는 비경제적이고, 고강도 강재의 경우에는 적절한 안전성을 확보하지 못할 우려가 있다.