• 제목/요약/키워드: Material behavior

검색결과 5,817건 처리시간 0.033초

소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구 (Development of the Simplified Analysis Model for RC Structures Considering Plastic Behavior)

  • 정연주;유영찬
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.361-371
    • /
    • 2000
  • RC 구조물은 서로 다른 재료적 특성을 지닌 콘크리트와 철근의 복합구조이고, 특히 콘크리트는 복잡한 소성거동을 나타내는 재료이다. 따라서 RC 구조물의 소성해석을 위해서는 콘크리트와 철근 각각의 재료특성과 소성거동을 묘사할 수 있는 세밀한 모델링 기법이 필요하지만, 이때 발생하는 모델링의 어려움, 모델링 규모, 계산용량 및 수렴성 등의 문제점으로 인하여 소성해석 수행에 많은 시간과 노력이 소요되거나 해석자체가 불가능하게 된다. 따라서 본 논문에서는 간편한 RC 구조물의 소성해석을 위해 RC 부재와 동일한 소성거동을 나타내는 균질·등방 재료로의 물성치환 방법을 제시하였다. 물성치환 원리는 RC 부재의 소성거동 특성, 즉 항복모멘트, 항복곡률 및 극한모멘트, 극한곡률로 표현되는 bi-linear 형태의 모멘트-곡률 관계를 이용하여, 이와 동일한 모멘트-곡률 관계(bi-linear 형태의 응력 변형률 관계)를 갖는 균질·등방 재료를 생성하였다. 또한 실제 RC 부재 해석모델과 치환된 균질·등방 재료를 이용한 해석모델에 대한 소성해석 결과를 비교·분석하여 본 연구의 타당성을 검증하였다.

  • PDF

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석 (Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model)

  • 이윤;김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

고인성 복합재료로 휨 보강된 구조물의 거동에 관한 수치해석적 연구 (Numerical Simulation on the Behavior of ECC-Strengthened Flexural Structures.)

  • 신승교;임윤묵;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.151-154
    • /
    • 2005
  • One of the most important characteristics of Engineered Cementitious Composite (ECC) is its strain hardening behavior up to $5\∼6\%$of stain under a tensile loading. So, the ductile behavior of ECC should be utilized in applications to maximize the performance of structures. Thus, in this study, the ductile behavior of ECC as a repair material applied to the tensile region under flexural loads is numerically examined using a developed numerical model. Several strain capacities of ECC are examined to predict the behavior of ECC strengthened flexural structures. The results show that a certain optimal level of ductility in ECCs for repair applications exists and it is an important factor to consider when using ECC as a repairing material.

  • PDF

Step Response of RF Plasma in Carbon Tetrafluoride($CF_4$)

  • So, Soon-Youl;Akinori Oda;Hirotake Sugawara;Yosuke Sakai
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.930-933
    • /
    • 2000
  • To understand the behavior of electron, ions and radicals on radio-frequency non-equilibrium plasma, it is necessary to know the basic information about its fundamental properties and reactions. Especially, the transient response of radio-frequency plasma has an important means of controlling selective etch rates and investigating the stability of a plasma chemical process. In this paper, we present the results of periodic steady-state behavior and transient behavior carbon Tetrafluoride(CF$_4$) discharge at 0.2 Torr in a 2 cm gap parallel-plate. After the number densities of charged particles became steady-state, the applied voltage was increased or decreased in an instant and the transient behavior of charged particles and radicals was investigated from one steady-state to the next steady state.

  • PDF

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

여자대학생의 물질주의 가치성향과 화폐에 대한 태도 및 금전사용행동 (The Material Values, Attitudes toward Money, and Money Use Behavior of Female Collegians)

  • 홍은실;황덕순;한경미
    • 가정과삶의질연구
    • /
    • 제19권1호
    • /
    • pp.143-158
    • /
    • 2001
  • The purpose of this study was to examine the influences of the material values, attitudes toward money, and the background variables to the money use behavior of female collegians. The samples were selected from 541 female collegians. Cronbach$\alpha$, One-way ANOVA, Duncan test, Multiple regression, Path analysis were used as statistical analysis. The results were summarized as follows : Resulting from multiple regression analysis, the money use behavior of female collegians had the positive linear relationships with the variables such as mothers level of education, material values, and 3 money attitude - the means of security, the symbol of anxiety, the means of pleasure - in five money attitude dimensions. The most influential variable was money attitude of the means of security.

  • PDF

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.