• Title/Summary/Keyword: Material analyses

Search Result 1,847, Processing Time 0.023 seconds

Construction stage analysis of Kömürhan Highway Bridge using time dependent material properties

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Adanur, Suleyman;Domanic, Arman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.207-223
    • /
    • 2010
  • The aim of this study concerns with the construction stage analysis of highway bridges constructed with balanced cantilever method using time dependent material properties. K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge constructed with balanced cantilever method and located on the 51st km of Elazi$\check{g}$-Malatya, Turkey, highway over Firat River is selected as an application. Finite element models of the bridge are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the analysis using P-Delta plus large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of internal forces such as bending moment, axial forces and shear forces for bridge deck and column are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

A Study of Preventing Chevron Crack in Cold Extrusion (냉간 압출시 Chevron Crack 방지에 대한 고찰)

  • 최영순;이정환
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.221-226
    • /
    • 1997
  • Chevron crack in cold extrusion has been studied in view of deformation conditions and material characteristics. There is V formed chevron crack is occasionally occurred in core part of shaft by multistage free extrusion. Although many research results were reported and theoretical analyses were accompanied, in this study we discussed practical method to prevent chevron crack in the field of working conditions and material characteristics. We have found that chevron crack is eliminated under condition of high hydrostatic state in deformation and decreased segregation, refinement of micro structure of materials.

  • PDF

Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

  • Albegmprli, Hasan M.;Cevik, Abdulkadir;Gulsan, M. Eren;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.259-277
    • /
    • 2015
  • The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

A Study on the Design Characteristics of Material in Contemporary Commercial Interior Space (현대 상업공간 실내에서 나타나는 재료의 표현특성에 관한 연구)

  • Eom, Hee-Lan;Kim, Moon-Duck
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.96-99
    • /
    • 2005
  • One of the characteristics of contemporary interior design is the prominence of material and its challenge to the established concept of interior design. As material has risen to the new element of design, losing its old concept as something secondary surrounding space, it had become an useful instrument to create unique images as well as to express the paradigm of space that modern society demands. The active role of material has made itself one of the primary elements that make a difference in design. Particularly in commercial spaces where sales are important and attractive spaces are needed, material has been emergent conveying its appling to consumers. Therefore, this study analyses the materiality that material has and its characteristics represented as images in commercial spaces. With the analysis, it researches further into the unlimited possibility of material and show the way for modern interior design to head for.

  • PDF

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

  • Hedayat, Afshin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.953-967
    • /
    • 2017
  • In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal-hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.