• Title/Summary/Keyword: Material Variable

검색결과 1,129건 처리시간 0.028초

가변초음파 적외선열화상을 이용한 이종접합용접부의 미세균열 검출 연구 (The Study of Micro Crack Detection in Dissimilar Metal Weld Using a Variable Ultrasound Infrared Thermography)

  • 박정학;박희상;최만용;권구안
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.215-220
    • /
    • 2015
  • 최근 널리 사용되는 모든 비파괴검사 기술 중 적외선열화상 카메라는 점차 적용 범위를 확대하고 있다. 초음파적외선 열화상은 절대온도 0 K 이상의 모든 물체가 방출하는 적외선 에너지를 검출하여 검사자가 볼 수 있는 화상으로 이미지를 만들어 검사하는 기술에 초음파를 접목하여 결함 부위만을 검출하는 방법으로 비접촉으로 넓은 범위를 빠른 시간에 검사할 수 있는 장점이 있는 기술이다. 본 연구에서는 고유주파수를 변화할 수 있는 터패놀-D 소재의 가변초음파 가진검사 방법을 이용하여 결함 검출의 적용가능성을 연구하였다.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

Wave propagation in FG polymer composite nanoplates embedded in variable elastic medium

  • Ahmed Kadiri;Mohamed Bendaida;Amina Attia;Mohammed Balubaid;S. R. Mahmoud;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Fouad Bourada;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제17권3호
    • /
    • pp.235-248
    • /
    • 2024
  • This study explores the transmission of waves through polymer composite nanoplates situated on varying elastic foundations. The reinforcement of these nanoplates is assured by graphene nanoplatelets (GNP). Furthermore, the material's behavior is assessed using the Halpin-Tsai model, while the precise representations of stress and strain effects are ensured by the four variables higher order shear deformation theory. The equations of motion are obtained and resolved through the application of Hamilton's principle and the trial function. The study examines how different factors, like the nonlocal parameter, strain gradient parameter, weight fraction, and variable elastic foundations affect the outcomes of wave propagation in nanoplates. This thorough investigation offers valuable insights into the difficult behavior of wave dynamics in nanoplates, this has led to substantial advancements in engineering applications for the future.

Γ-CONVERGENCE FOR AN OPTIMAL DESIGN PROBLEM WITH VARIABLE EXPONENT

  • HAMDI ZORGATI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.296-310
    • /
    • 2023
  • In this paper, we derive the Γ-limit of functionals pertaining to some optimal material distribution problems that involve a variable exponent, as the exponent goes to infinity. In addition, we prove a relaxation result for supremal optimal design functionals with respect to the weak-∗ L(Ω; [0, 1])× W1,p0 (Ω;ℝm) weak topology.

레일패드 소재의 물리적 특성에 관한 비교 연구 (A Comparative Study on Mechanical Properties of Rail Pad Material)

  • 권성태;나성훈;김정남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.510-515
    • /
    • 2004
  • In this study, we investigate the mechanical properties of rail pad material according to pad types. Especially, to study the application and endurance of TEEE material, we conducted experiments such as tension strength test, hardness test, fatigue test and wear test. Test results showed that TEEE material was better application and endurance than other pad material, but there was difficulties for comparing with others because the variations of application according to pad' types were variable.

  • PDF

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.

유압식 핀-온-디스크형 마멸시험기의 설계 및 제어에 관한 연구 (A study on design and control of hydraulic pin-on-disc type tribotester)

  • 박명식;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1436-1440
    • /
    • 1996
  • The wear mechanism of material is an important mechanic property to select a material's life and a optimum work condition. Although there are many researches about a wear mechanism of material, the pin-on-disc type tribotester is widely known to us. It is difficult to add a variable and heavy load in the existing pin-on-disc type tribotester to estimate this wear mechanism. And due to a rotation of a disc, it is impossible to add a constant force. But we can solve this problem by using a hydraulic servo system. Therefore, in order to investigate a wear mechanism of materials, it is necessary to design a hydraulic pin-on-disc type tribotester and construct a controller against a variable disturbance.

  • PDF

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

Generalized photo-thermal interactions under variable thermal conductivity in a semi-conducting material

  • Aatef D. Hobiny;Ibrahim A. Abbas;C Alaa A. El-Bary
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.641-648
    • /
    • 2023
  • In this article, we explore the issue concerning semiconductors half-space comprised of materials with varying thermal conductivity. The problem is within the framework of the generalized thermoelastic model under one thermal relaxation time. The half-boundary space's plane is considered to be traction free and is subjected to a thermal shock. The material is supposed to have a temperature-dependent thermal conductivity. The numerical solutions to the problem are achieved using the finite element approach. To find the analytical solution to the linear problem, the eigenvalue approach is used with the Laplace transform. Neglecting the new parameter allows for comparisons between numerical findings and analytical solutions. This facilitates an examination of the physical quantities in the numerical solutions, ensuring the accuracy of the proposed approach.

The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory

  • Alwabli, Afaf S.;Kaci, Abdelhakim;Bellifa, Hichem;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alzahrani, Dhafer A.;Abulfaraj, Aala A.;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Mahmoud, S.R.;Hussain, Muzamal
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 2021
  • Microtubules (MTs) are the main part of the cytoskeleton in living eukaryotic cells. In this article, a mechanical model of MT buckling, considering the modified strain gradient theory, is analytically examined. The MT is assumed as a cylindrical beam and a new single variable trigonometric beam theory is developed in conjunction with a modified strain gradient model. The main benefit of the present formulation is shown in its new kinematic where we found only one unknown as the Euler-Bernoulli beam model, which is even less than the Timoshenko beam model. The governing equations are deduced by considering virtual work principle. The effectiveness of the present method is checked by comparing the obtained results with those reported by other higher shear deformation beam theory involving a higher number of unknowns. It is shown that microstructure-dependent response is more important when material length scale parameters are closer to the outer diameter of MTs. Also, it can be confirmed that influences of shear deformation become more considerable for smaller shear modulus and aspect ratios.