• Title/Summary/Keyword: Material Prices

Search Result 130, Processing Time 0.03 seconds

Consideration of the Lifting Lug Structure using the Hybrid Structural Design System (하이브리드 구조설계 시스템을 이용한 선박블록 탑재용 러그구조 고찰)

  • Ham, Juh-Hyeok;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • In the view of the importance of material reduction due to the jump in oil and steel prices, an optimized structural system for lifting lugs was developed. Such a system is needed hundreds of thousands of times a year. A direct design process was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to verify the system efficiency and convenience, several new prototype lug shapes were suggested using the developed system. From these research results, it was found that the slope of the main plate of the lug structure has a tendency to move from about 45 degrees to about 60 degrees and the design weight was reduced from an initial value of about 32kgf to about $15{\sim}19kg_f$ after the redesign. Based on these initial research results, an efficient reduction in steel weight was expected considering the enormous consumption of lug structures per year. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

Development of the Two-piece Aluminum Wheels Using the Friction Stir Welding (마찰교반용접법을 이용한 2피스 알루미늄 휠의 개발)

  • Choi, In-Young;Kang, Young-June;Kim, Andrey;Ahn, Kyu-Saeng
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.700-707
    • /
    • 2013
  • Owing to high oil prices and environmental issues, the automobile industry has conducted considerable research and made large investments to manufacture a high-efficiency automobiles. In the case of automobile wheels in which a lightweight material is used to increase the fuel efficiency a mold is used to increase the production efficiency; however, the use of the molding method for this purpose is very expensive. Therefore an automobile wheel consists of two parts. In this study a two-piece automobile wheel is manufactured by the friction stir welding(FSW) of Al6061-T6 to reduce the manufacturing cost and process complexity. The FSW welding tool geometry and rotational speed, and the feed rate are key factors that significantly affect the weld strength. Therefore tensile tests were conducted on specimens produced using various welding conditions, and the optimal FSW welding conditions were applied to manufacture aluminum wheels. To ensure reliability, prototype aluminum wheels were manufactured and their mechanical reliability and safety were evaluated using a durability test, fatigue durability test, and impact test. Through this study, aluminum wheel production was made possible using the FSW method.

An Empirical Study about Assessment of the JIT System: on korean semi-production firm

  • Lee, Eung-Kweon
    • International Commerce and Information Review
    • /
    • v.7 no.2
    • /
    • pp.75-94
    • /
    • 2005
  • This study is focused on evaluating the computer-integrated just-in-time (CI-JIT) production system of a semi-conductor manufacturing firm in Korea. Approaching the mid-1980s, the emphasis was on low price, low-cost operations, and quality, especially in USA. American companies have shifted output to low-wage countries like the Philippines, Korea, Japan, Malaysia and allied countries that can make quality products at low prices. Korea and other Asian countries forego short-term profits to gain a solid foothold in a product market, recognizing that larger market share leads to lower cost and higher profit in the long run. They bring manufacturers and suppliers together to improve material management and operation management, using project teams that investigate topics, such as Just-In-Time(JIT)manufacturing, among others. The "Kanban" word means "card" in Japanese, and is used to indicate the desired final delivery schedule. The operation for a particular item produced is scheduled for a specific time. The same process is extended to the external suppliers. More recently, the cards are gradually being replaced by electronic procedures that follow the same concept. Its capacity must be capable of handling the various transactions required by the JIT coverage as well as some allowances for expanded applications.

  • PDF

한약재 품질관리의 개선방향

  • Park, Jin-Han
    • 대한한약학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.129-144
    • /
    • 2007
  • In order for stable demand-supply and regularity of distribution, "The regulations for management of demand-supply and distribution of medicinal herbs" were established on 1995. Therefore, the medicinal herbs of good quality have been controled to be distributed in the market. However, to be wide of the purpose, the standardized sound distribution system was caused due to the governmental control on demand-supply to protect domestic farmers who produce the material for medicinal herbs, which results in the over distribution of non-standardized or illegally imported medicinal herbs. In addition, because of the distribution of faulty or poor medicinal herbs, there are chances of affecting bad effects on public health. The standardized medicinal herbs cover 514 different kinds in total, of which 69 products are specified to be standardized in the oriental medicine product companies. Also, in order to protect farmers who produce the materials for medicinal herbs, the amount of imported materials are regulated in normal times. The 14 different materials for medicinal herbs, which are allowed to be imported to a certain amount only when the shortage of goods or sudden rise of prices is to happen, are frequently introduced into domestic market as food not as medical usage, and the origin of those illegally changes to home cropped one for the distribution in the market. In addition, the system of distribution are to be disordered and the condition for the distribution of medicinal herbs of good quality can not be made since they illegally changes the usage of the materials for medicinal herbs from their original one and can not be regulated by the domestic laws.

  • PDF

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

Dispatching to Minimize Flow Time for Production Efficiency in Non-Identical Parallel Machines Environment with Rework (재작업이 존재하는 이종병렬기계에서 생산효율을 위해 공정소요시간 단축을 목적으로 하는 작업할당)

  • Seo, Jung-Ha;Ko, Hyo-Heon;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.367-381
    • /
    • 2011
  • Reducing waste for the efficiency of production is becoming more important because of the rapidly changing market circumstances and the rising material and oil prices. The dispatching also has to consider the characteristic of production circumstance for the efficiency. The production circumstance has the non-identical parallel machines with rework rate since machines have different capabilities and deterioration levels in the real manufacturing field. This paper proposes a dispatching method, FTLR (Flow Time Loss Index with Rework Rate) for production efficiency. The goal of FTLR is to minimize flow time based on such production environments. FTLR predicts the flow time with rework rate. After assessing dominant position of expected flow time per each machine, FTLR performs dispatching to minimize flow time. Experiments compare various dispatch methods for evaluating FTLR with mean flow time, mean tardiness and max tardiness in queue.

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

A Genetic Algorithm for Directed Graph-based Supply Network Planning in Memory Module Industry

  • Wang, Li-Chih;Cheng, Chen-Yang;Huang, Li-Pin
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 2010
  • A memory module industry's supply chain usually consists of multiple manufacturing sites and multiple distribution centers. In order to fulfill the variety of demands from downstream customers, production planners need not only to decide the order allocation among multiple manufacturing sites but also to consider memory module industrial characteristics and supply chain constraints, such as multiple material substitution relationships, capacity, and transportation lead time, fluctuation of component purchasing prices and available supply quantities of critical materials (e.g., DRAM, chip), based on human experience. In this research, a directed graph-based supply network planning (DGSNP) model is developed for memory module industry. In addition to multi-site order allocation, the DGSNP model explicitly considers production planning for each manufacturing site, and purchasing planning from each supplier. First, the research formulates the supply network's structure and constraints in a directed-graph form. Then, a proposed genetic algorithm (GA) solves the matrix form which is transformed from the directed-graph model. Finally, the final matrix, with a calculated maximum profit, can be transformed back to a directed-graph based supply network plan as a reference for planners. The results of the illustrative experiments show that the DGSNP model, compared to current memory module industry practices, determines a convincing supply network planning solution, as measured by total profit.

The Advanced Case Study for Investigation on Application of BIPV on Tall Building (초고층빌딩의 BIPV 적용성 검토를 위한 선진 사례 조사)

  • Lee, Jong-Min;Seok, Ho-Tae;Yang, Jeong-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.155-160
    • /
    • 2009
  • The increasingly high prices for oil, the exhaustion of fossil fuels as well as concern about global warming are driving rapid growth of alternative sources of energy in the world. The active solution for global environment and exhaustion of energy sources is to develop and popularize the technologies to use natural energy such as sunlight, wind, and water. PV(Photovoltaic) modules are efficient devices that has been considered a logical material for use in buildings. Recent advanced BIPV(Building Integrated PV) technology have rapidly made PVs suitable for direct integration into construction in the world. Recently, building has been higher and higher. Tall buildings have many advantages for BIPV such as wide facade area and no shading effect by the surrounding buildings. However. BIPV has not been applied for tall building facade yet. Therefore, the purpose of the research is to develop suitable BIPV for tall buildings and to put these technologies to practical use. Therefore, the purpose of the study is to investigate unification of BIPV to curtain wall to apply BIPV on tall building through research into advanced application of overseas BIPV cases.

  • PDF