• 제목/요약/키워드: Material Parameters

검색결과 4,530건 처리시간 0.031초

유전 알고리즘을 이용한 다중 양자 우물 구조의 갈륨비소 광수신소자 공정변수의 최적화 (Optimization of Device Process Parameters for GaAs-AlGaAs Multiple Quantum Well Avalanche Photodiodes Using Genetic Algorithms)

  • 김의승;오창훈;이서구;이봉용;이상렬;명재민;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.241-245
    • /
    • 2001
  • In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.

  • PDF

라우드스피커의 선형매개변수 규명법에 대한 연구 (Study on Linear Parameters Identification of Loudspeaker)

  • 박석태
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.415-420
    • /
    • 2002
  • 라우드스피커의 선형 매개변수를 규명하는 두가지 방법을 기술하였다. 박스 법과 질량 추가 법을 이용하여 라우드스피커의 선형 매개변수를 규명하는 방법을 개발하였다. 상용 소프트웨어를 사용하여 구한 결과와 비교 검토하여 각 방법의 장단점을 비교하였다. 상용 소프트웨어인 라우드 소프트웨어에서 사용하는 박스 법을 사용하여 규명한 매개변수 결과는 본 논문에서 개발한 두가지 방법과는 큰 차이를 보이고 있으나, 개발한 두가지 방법의 매개 변수의 오차는 최대 4%이내였다. 박스 법을 이용하여 매개변수를 규명할 때에는 박스에 넣는 다공질 재료의 양에 따라 매개변수가 다르게 규명되는 현상도 기술하였다.

Stochastic finite element analysis of composite plates considering spatial randomness of material properties and their correlations

  • Noh, Hyuk-Chun
    • Steel and Composite Structures
    • /
    • 제11권2호
    • /
    • pp.115-130
    • /
    • 2011
  • Considering the randomness of material parameters in the laminated composite plate, a scheme of stochastic finite element method to analyze the displacement response variability is suggested. In the formulation we adopted the concept of the weighted integral where the random variable is defined as integration of stochastic field function multiplied by a deterministic function over a finite element. In general the elastic modulus of composite materials has distinct value along an individual axis. Accordingly, we need to assume 5 material parameters as random. The correlations between these random parameters are modeled by means of correlation functions, and the degree of correlation is defined in terms of correlation coefficients. For the verification of the proposed scheme, we employ an independent analysis of Monte Carlo simulation with which statistical results can be obtained. Comparison is made between the proposed scheme and Monte Carlo simulation.

Neck Formation in Drawing Processes of Fibers

  • Chung, Kwansoo;Yoon, Hyungsop;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제2권1호
    • /
    • pp.140-143
    • /
    • 2001
  • To better understand the formation of necking in drawing processes of fibers, strain distributions during drawing processes have been analyzed. For simplicity, one-dimensional incompressible steady flow at a constant temperature was assumed and quasi-static model was used. To describe mechanical properties of solid polymers, non-linear visco-plastic material properties were assumed using the power law type hardening and rate-sensitive equation. The effects of various parameters on the neck formation were matematically analyzed. As material property parameters, strain-hardening parameter, visco-elastic coefficient and strain-rate sensitivity were considered and, for process parameters, the drawing ratio and the process length were considered. It was found that rate-insensitive materials do not reach a steady flow state and the rate-sensitivity plays a key role to have a steady flow. Also, the neck formation is mainly affected by material properties, especially for the quasi-static model. If the process length changes, the strain distribution was found to be proportionally re-distributed along the process line by the factor of the total length change.

  • PDF

외주에 균일한 압축을 받는 두꺼운 복합원관의 분지거동 (Bifurcation Behaviours of Composite Tubes With Two Different Materials Subjected To Uniform Radial Shrinkage At The External Surface)

  • 김영석;추석만
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.269-275
    • /
    • 1990
  • Nonaxisymmetric bifurcation behaviours of composite tubes two different materials subjected to uniform radial shrinkage at the external surface have been investigated and compared with those of single tube. The effect of material parameters normalized with respect to those of outer tube upon the bifurcation point and corresponding mode has been clarified. The parameters substantially affect the bifurcation mode with long-wavelength so that the composite tube with low hardening exponent or with high yield stress of inner tube destabilizes the overall deformation of the tube. However surface type bifurcation, short-wavelength mode, shown on the traction-free inner surface is hardly affected by the material parameters. The surface type bifurcation completely depends on the material characteristics of inner tube and the bifurcation point of composite tube almost coincides with the of single tube.

DFM 개념을 적용한 MEMS design flow (MEMS Design Flow Based on DFM Concept)

  • 한승오;오박균
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1466-1470
    • /
    • 2007
  • MEMS design flow based on DFM concept is presented and applied to gyroscope design as a test case. It is purposed to contribute to the yield improvement by considering the process-related parameters from the design phase. After defining the performance requirements, the sensitivity analysis should be done on the draft design(s) to find out the key parameters related with the device performance. By doing so, TEG can be designed for the selected process and/or material parameters. Through a set of test runs, the process capability is characterized and the material properties are extracted using the TEG. Then we can estimate the virtual yield of the current process for the designed device by running Monte Carlo analysis where the process and/or material property variations are considered. The estimated yield will make us redesign the device to be more robust or improve the current process to have the smaller variations.

The torsional buckling analysis for cylindrical shell with material non-homogeneity in thickness direction under impulsive loading

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.231-236
    • /
    • 2005
  • This study considers the buckling of orthotropic cylindrical thin shells with material nonhomogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic stability and compatibility equations are obtained first. Applying Galerkin's method then applying Ritz type variational method to these equations and taking the large values of loading parameters into consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects of the periodic and power variations of Young's moduli and density, ratio of Young's moduli variations, loading parameters variations and the power of time in the torsional load expression variations are studied via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

Facile Evaluation of Thermodynamic Parameters for Reverse Thermochromism of Indolinobenzospiropyran-6-carboxylates in Aqueous Binary Solvents

  • Keum, Sam-Rok;Ma, So-Young;Lim, Hyun-Woo;Han, Tae-Hwi;Choi, Kyu-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2683-2688
    • /
    • 2012
  • The position of the thermodynamic equilibrium for reverse thermochromic spiropyran 6-carboxylates (SP-COOHs) was easily determined in aqueous binary mixtures, such as water-methanol, water-acetonitrile and water-dimethyl sulfoxide. The existence of more than one type of interconvertible species of the ring-opened form of SP-COOH in aqueous binary solvents enables us to evaluate the molar extinction coefficients of the ring-opened species of SP-COOH and to obtain the thermodynamic parameters.

Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials

  • Rajabi, Mohammad;Soltani, Nasser;Eshraghi, Iman
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.217-230
    • /
    • 2016
  • Effects of temperature dependent material properties on mixed mode fracture parameters of functionally graded materials subjected to thermal loading are investigated. A domain form of the $J_k$-integral method including temperature-dependent material properties and its numerical implementation using finite element analysis is presented. Temperature and displacement fields are calculated using finite element analysis and are used to compute mixed mode stress intensity factors using the $J_k$-integral. Numerical results indicate that temperature-dependency of material properties has considerable effect on the mixed-mode stress intensity factors of cracked functionally graded structures.

Factors Affecting the Characteristics of Melamine Resin Microcapsules Containing Fragrant Oils

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.391-395
    • /
    • 2006
  • Microcapsules containing fragrant oils as a core material were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.