• Title/Summary/Keyword: Material Nonlinearity

Search Result 500, Processing Time 0.029 seconds

DC Accelerated Aging Characteristics of ZPCCL-Based Varistor Ceramics (ZPCCL계 바리스터 세라믹스의 DC 가속열화특성)

  • Kim, Hyang-Suk;Nahm, Choon-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.629-633
    • /
    • 2002
  • The degradation behaviour of ZPCCL-based varistor ceramics composed of 97.5 mol%ZnO-0.5 mol% $Pr_6O_{11}-1.0$ mol% $Cr_2O_3-0.5$ mol% $La_2O_3$ was investigated under various DC accelerated aging streses. The varistor ceramics sintered for 1 h exhibited excellent nonlinearity, in which the nonlinear exponent is 81.6 and the leakage current is $0.2{\mu}A$. It was found that this varistor ceramics possess high stability, in which the variation rates of varistor voltage, nonlinear exponent, and leakage current are -1.14%, -3.7%, and 85.0%, respectively, against DC accelerated aging stress. On the contrary, the varistor ceramics sintered for 2 h also exhibited high nonlinearity and stability, but they were bad characteristics, compared with the varistor ceramics sintered for 1 h.

  • PDF

Numerical Study on the Joints between Precast Post-Tensioned Segments

  • Kim, Tae-Hoon;Kim, Young-Jin;Jin, Byeong-Moo;Shin, Hyun-Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.3-9
    • /
    • 2007
  • This paper presents a numerical procedure for analyzing the joints between precast post-tensioned segments. A computer program for the analysis of reinforced concrete structures was run for this problem. Models of material nonlinearity considered in this study include tensile, compressive and shear models for cracked concrete and a model for reinforcing steel with smeared crack. An unbonded tendon element based on the finite element method, that can describe the interaction between the tendon and concrete of prestressed concrete member, was experimentally investigated. A joint element is newly developed to predict the inelastic behavior of the joints between segmental members. The proposed numerical method for the joints between precast post-tensioned segments was verified by comparison of its results with reliable experimental results.

Predictions of Nonlinear Behavior and Strength of Thick Composites with Fiber Waviness under Tensile/Compressive Load (굴곡진 보강섬유를 가진 두꺼운 복합재료의 인장/압축 비선형 거동 및 강도예측)

  • 유근수;전흥재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.819-822
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. Thick composites with fiber waviness have two kinds of nonliearity. One is material nonlinearity, and the other is geometrical nonliearity due to fiber waviness. There are only a few studies that have considered both material and geometrical nonlinearities. In this paper, a FEA model was proposed to predict nonlinear behavior and strength of thick composites with fiber waviness.

  • PDF

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF

The Study of Electrical Characteristic of ZnO Varistor with Voronoi Network (보로노이 네트워크를 이용한 ZnO 바리스터의 전기적 특성 연구)

  • 황휘동;한세원;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.85-89
    • /
    • 1997
  • A microstructure of realistic ZnO varistor was constructed by Voronoi network and studied cia computer simulation. The grain size and standard deviation was calculated with new method and have good agreement with experimental data. In this network, the grain boundary conditions of three different type are randomly distributed. The three electrical boundary conditions . (1) type A junctions (high nonlinearity); (2) type B junctions (low nonlinearity); (3) type C junctions (linear with low-resistivity) are fitted from the experimental measurement. The electrical properties were studied by varying the boundary type concentration and the disorder parameter d. The shape of I-V characteristic curve of the network is affected by the type concentration and the disorder parameter has an effect on the double inflected region.

  • PDF

Degradation Characteristics Against Impulse Current Stress of ZPCCL-Based Varistors (ZPCCL계 바리스터의 충격전류 스트레스에 대한 노화 특성)

  • Park, Jong-Ah;Yoo, Dea-Hoon;Nahm, Choon-Woo;Seo, Hyung-Gwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.315-317
    • /
    • 2005
  • The microstructure, electrical, and degradation characteristics against impulse current of ZPCCL-based varistors were investigated with various sintering temperature in the range of $1240\sim1300^{\circ}C$. The densification of varistors was improved, but the nonlinearity was deteriorated with increase of sintering temperature. The varistors sintered at $1250^{\circ}C$ and $1260^{\circ}C$ exhibited high stability against surge stress. On the whole, the variation of characteristics of varistor for surge stress was increased in order of varistor voltage$\rightarrow$nonlinear exponent$\rightarrow$dissipation factor$\rightarrow$leakage current.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Initial Second Harmonic Generation in Narrowband Surface Waves by Multi-Line Laser Beams for Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • Acoustic nonlinearity of surface waves is an effective method to evaluate the micro damage on the surface of materials. In this method, the $A_1$ (magnitude of the fundamental wave) and $A_2$ (magnitude of the second-order harmonic wave) are measured for evaluation of acoustic nonlinearity. However, if there is another source of second-order harmonic wave other than the material itself, the linear relationship between $A_1{^2}$ and $A_2$ will not be guaranteed. Therefore, the second-order harmonic generation by another source should be fully suppressed. In this paper, we investigated the initial second-order harmonic generation in narrowband surface waves by multi-line laser beams. The spatial profile of laser beam was considered in the cases of Gaussian and square-like. The temporal profile was assumed to be Gaussian. In case of Gaussian spatial profile, the generation of the initial second-order harmonic wave was inevitable. However, when the spatial profile was square-like, the generation of the initial second-order harmonic wave was able to be fully suppressed at specific duty ratio. These results mean that the multi-line laser beams of square-like profile with a proper duty ratio are useful to evaluate the acoustic nonlinearity of the generated surface waves.