• Title/Summary/Keyword: Material Imperfections

Search Result 92, Processing Time 0.024 seconds

Local buckling of rectangular steel tubes filled with concrete

  • Kanishchev, Ruslan;Kvocak, Vincent
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2019
  • This scientific paper provides a theoretical, numerical and experimental analysis of local stability of axially compressed columns made of thin-walled rectangular concrete-filled steel tubes (CFSTs), with the consideration of initial geometric imperfections. The work presented introduces the theory of elastic critical stresses in local buckling of rectangular wall members under uniform compression. Moreover, a numerical calculation method for the determination of the critical stress coefficient is presented, using a differential equation for a slender wall with a variety of boundary conditions. For comparison of the results of the numerical analysis with those collected by experiments, a new model is created to study the behaviour of the composite members in question by means of the ABAQUS computational-graphical software whose principles are based on the finite element method (FEM). In modelling the analysed members, the actual boundary and loading conditions and real material properties are taken into account, obtained from the experiments and material tests on these members. Finally, the results of experiments on such members are analysed and then compared with the numerical values. In conclusion, several recommendations for the design of axially compressed composite columns made of rectangular concrete-filled thin-walled steel tubes are suggested as a result of this comparison.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

Experimental Study on the Ultimate Strength of Composite Cylinders under Hydrostatic Pressure (수압을 받는 복합재 원통의 최종강도 실험 연구)

  • Cho, Sang-Rai;Koo, Jeong-Bon;Cho, Jong-Rae;Kwon, Jin-Hwe;Choi, Jin-Ho;Kim, Hyun-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.52-57
    • /
    • 2007
  • Composite material is one of the strongest candidates for deep see pressure hulls. Research regarding composite cylinders, subjected to hydrostatic pressure, has been ongoing for a couple of decades, abroad, but domestic research is very new. Experimental investigations seem necessary, in order to understand their structural behavior not only up to the ultimate limit state, but in the post-ultimate regime. That experimental information will be very helpful in the development of any theoretical methods or to substantiate any commercial numerical packages for structural analyses. In this study, ultimate strength tests on seven composite cylinders subjected to hydrostatic pressure are reported, which includes the fabrication method of models, mechanical properties of the material, initial shape imperfection measurements, test procedure, and strain and axial shortening measurements during the tests. The ultimate strengths of the models were compared with predictions of numerical analyses. The numerical predictions are higher than the test results. It seems necessary to improve the accuracy of the numerical predictions by considering the initial shape and material imperfections.

Improvement and Actural States of Radiotechnological Instruction by Student's Characteristics (방사선과(放射線科) 학생(學生) 특성(特性)에 따른 교수(敎授)-학습방법(學習方法)의 실태(實態)와 개선방향(改善方向))

  • Lee, Who-Min;Kim, Hak-Sung;Lee, Sang-Suk;Oh, Hyun-Joo;Kim, Sung-Soo;Kim, Young-Il;Kim, Heung-Tae;Lim, Han-Young
    • Journal of radiological science and technology
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • We have been received questionnairs on the general characteristics and cognition of radiotechnological students, instruction which they hope, and the present processing actural states of instruction to 610 numbers of 2, 3 years radiotechnological students in korea. We have been perceived the actural states of radiotechnological instruction by the results of questionnaires, therefore, the imperfections of student's contentment, lack of instruction plan and audio-visual material's practical use, insufficient of study activities on instruction process, lack of clinical adaptation and practice of lecture evaluation were founded. We propose the solving method of these problems as the improvement of instruction. It is necessary for the will and effort of college and teacher to practices these problems.

  • PDF

Structural performance of cold-formed steel composite beams

  • Dar, M. Adil;Subramanian, N.;Anbarasu, M.;Dar, A.R.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.545-554
    • /
    • 2018
  • This study presents a novel method of improving the strength and stiffness of cold-formed steel (CFS) beams. Flexural members are primary members in most of the structures. Hence, there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and develop novel techniques to address the severe local buckling problems that exist in CFS flexural members. The primary objective of this study was to develop new CFS composite beam sections with improved structural performance and economy. This paper presents an experimental study conducted on different CFS composite beams with simply supported end conditions under four point loading. Material properties and geometric imperfections of the models were measured. The test strengths of the models are compared with the design strengths predicted by using Australian/New Zealand Standard for cold-formed steel structures. Furthermore, to ensure high precision testing, a special testing rig was also developed for testing of long span beams. The description of test models, testing rig features and test results are presented here. For better interpretation of results, a comparison of the test results with a hot rolled section is also presented. The test results have shown that the proposed CFS composite beams are promising both in terms of better structural performance as well as economy.

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

Research for Fatigue Life Extension Techniques in Weldments via Pneumatic Hammer Peening (공압식 헤머피닝을 이용한 용접부 피로수명 연장기술 연구)

  • Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.842-848
    • /
    • 2009
  • Fatigue failures are often occurred at welded joints where stress concentrations are relatively high due to the joint geometry. Although employing good detail design practices by upgrading the welded detail class enables to improve the fatigue performance, in many cases, the modification of the detail may not be practicable. As an alternative, the fatigue life extension techniques that reduce the severity of the stress concentration at the weld toe region, remove imperfections and introduce local compressive welding residual stress, have been applied. These techniques are also used as definite measures to extend the fatigue life of critical welds that have failed prematurely and have been repaired. In this study, a hammer peening procedure for using commercial pneumatic chipping hammer was developed, and the effectiveness is quantitatively evaluated. The pneumatic hammer peening makes it possible to give the weld not only a favorable shape reducing the local stress concentration, but also a beneficial compressive residual stress into material surface. In the fatigue life calculation of non-load carrying cruciform specimen treated by the pneumatic hammer peening, the life was lengthened about ten times at a stress range of 240MPa, and fatigue limit increased over 65% for the as-welded specimen.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.