• Title/Summary/Keyword: Matched motion

Search Result 135, Processing Time 0.025 seconds

Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model (다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석)

  • Woo D.G.;Kim Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF

Stabilized 3D Pose Estimation of 3D Volumetric Sequence Using 360° Multi-view Projection (360° 다시점 투영을 이용한 3D 볼류메트릭 시퀀스의 안정적인 3차원 자세 추정)

  • Lee, Sol;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.76-77
    • /
    • 2022
  • In this paper, we propose a method to stabilize the 3D pose estimation result of a 3D volumetric data sequence by matching the pose estimation results from multi-view. Draw a circle centered on the volumetric model and project the model from the viewpoint at regular intervals. After performing Openpose 2D pose estimation on the projected 2D image, the 2D joint is matched to localize the 3D joint position. The tremor of 3D joints sequence according to the angular spacing was quantified and expressed in graphs, and the minimum conditions for stable results are suggested.

  • PDF

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Estimation of source signal and channel response using ray-based blind deconvolution technique for Doppler-shifted underwater channel (음선 기반 블라인드 디컨볼루션 기법을 이용한 수중 도플러 편이 채널에서의 송신 신호 및 채널 응답 추정)

  • Byun, Gi Hoon;Oh, Se Hyun;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.331-339
    • /
    • 2016
  • This paper suggests an estimation method of the source signal and the channel impulse response (CIR) using ray-based blind deconvolution (RBD) in the underwater acoustic channel environment where Doppler effect exists by the relative motion between source and receiver. It is difficult to estimate the CIR on Doppler effect by the matched filter with a highly Doppler-sensitive waveform such as the m-sequence signal because Doppler shift can severely degrade the correlation between the received signal corrupted by Doppler effect and the original source signal. In this study, the Doppler-shifted source-signal's phase is estimated using the RBD, and the received signal is compensated by it to obtain the Doppler-corrected CIR. It is verified that using the matched filter with the received signal from the experimental data fails to estimate the CIR while the obtained CIR by the suggested method has the similarity to the propagation path of the ray model. Also, the results show that the reconstructed source signal using the RBD has the better Doppler shift compensation than the Doppler-shifted source signal derived from scattering function.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Osteomyelitis following Domestic Animal Bites to the Hand: Two Case Reports and Practical Guidelines

  • Lim, Jung Soo;Byun, Jin Hwan;Min, Kyung Hee;Lee, Hye Kyung;Choi, Yun Sun
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.590-594
    • /
    • 2016
  • Recently, the number of cases of animal bite wounds has increased significantly in concordance with an increase in the pet population around the world. The authors report two rare cases of osteomyelitis of the phalanx following cat and dog bites. On initial physical examination, signs of a severe infection were observed. Radiographs of both patients showed the presence of osteomyelitis, and in one of the patients, the diagnosis was confirmed with a bone biopsy. After use of empirical antibiotics, intravenous antibiotic therapy that matched the identified bacterium's sensitivity was initiated, and at the same time, secure dressing including debridement was performed to induce secondary healing. In addition, the patients were closely monitored with serial X-rays, and culture and blood test follow-up. One patient fully recovered without sequelae, but the other patient suffered a loss of distal interphalangeal joint motion. When dealing with bite wounds located on the hand, it is important to visit the hospital as soon as possible and receive the appropriate treatment early. Moreover, to prevent severe complications such as osteomyelitis, it is important to administer antibiotic therapy to which the cultured bacteria are sensitive, along with proper wound management and prophylactic antibiotic treatment.

Development of a Point Tracking System for Measuring Structural Deformations Using Commercial Video Cameras

  • Kim, Hong-Il;Kim, Ho-Young;Park, Hyun-Jin;Han, Jae-Hung;Kim, Jun-Bum;Kim, Do-Hyung;Han, Jeong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • This paper deals with the creation of a new, low-cost point/position tracking system that can measure deformations in engineering structures with simple commercially widespread cameras. Though point tracking systems do exist today, such as Stereo Pattern Recognition (SPR) and Projection Moir$\acute{e}$ Interferometry (PMI) systems, they are far too costly to use to analyze small, simple structures because complex optical components such as large flashes, high-resolution cameras and data acquisition systems with several computers are required. We developed a point tracking system using commercial cameras. This system used IR LEDs and commercial IR CCD cameras to minimize the interference posed by other extraneous light sources. The main algorithm used for this system is an optical point tracking algorithm, which is composed of the point extraction algorithm and the point matching algorithm for 3-D motion estimation. a series of verification tests were performed. Then, the developed point tracking system was applied to measure deformations of an acrylic plate under a mechanical load. The measured deformations of the acrylic plate matched well with the numerical analysis results. The results indicate that the developed point tracking system is reliable enough to measure continuous deformed shapes of various engineering structures.

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF

Characteristics of Spatio-Temporal Parameters in Parkinson's Disese During Walking (보행 시 파킨슨병 환자의 시·공간적 지표의 특성)

  • Lee, Sung-Yong;Woo, Young-Keun;Shin, Seung-Sub;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study was to compare spatio-temporal parameters during walking between patients with idiopathic Parkinson's disease and a control group matched for age, height, and weight. Thirty-three subjects were included in this study. Fifteen normal subjects (age, $63.3{\pm}5.8$ yrs; height, $164.1{\pm}8.7$ cm; weight, $60.7{\pm}17.5$ kg) and eighteen patients (age, $64.0{\pm}7.7$ yrs; height, $164.7{\pm}7.3$ cm; weight, $63.6{\pm}7.7$ kg) participated in the study. The Vicon 512 Motion analysis system was used for gait analysis in each group during walking, with and without an obstacle. The measured spatio-temporal parameters were cadence, walking speed, stride time, step time, single limb support time, double limb support time, stride length, and step length. Results in stride length and step length, when walking without an obstacle, showed a significantly greater decrease in the patient group compared to the control group. During walking with an obstacle, the patient group showed a significantly greater decrease in the step length as compared to the control group. For the control group, there were significant decreases in parameters of cadence and walking speed and increases in parameters of stride time, step time, and single limb support time when walking with an obstacle. The patient group had lower cadence and walking speed and higher stride time, step time, and single limb support time during walking with an obstacle than in walking without an obstacle. These results suggest that patients with Parkinson's disease who walk over an obstacle can decrease cadence, stride length, and step length. Further study is needed, performed with more obstacles and combined with other external cues, such as visual or acoustic guides.

  • PDF

A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly (북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.