• Title/Summary/Keyword: Match rate

Search Result 282, Processing Time 0.017 seconds

The Comparison of Results Among Hepatitis B Test Reagents Using National Standard Substance (국가 표준물질을 이용한 B형 간염 검사 시약 간의 결과 비교)

  • Lee, Young-Ji;Sim, Seong-Jae;Back, Song-Ran;Seo, Mee-Hye;Yoo, Seon-Hee;Cho, Shee-Man
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.203-207
    • /
    • 2010
  • Purpose: Hepatitis B is infection caused by Hepatitis B virus (HBV). Currently, there are several methods, Kits and equipments for conducting Hepatitis B test. Due to ununiformed methods, it would cause some differences. To manage these differences, it needs process evaluating function of test system and reagent using particular standard substance. The aim of this study is to investigate tendency of RIA method's reagent used in Asan Medical Center through comparing several other test reagents using national standard substance. Materials and Methods: The standard substance in National Institute of Food and Drug Safety Evaluation's biology medicine consists of 5 things, 4 antigens and 1 antibody. We tested reagents using A, B company's Kits according to each test method. All tests are measured repeatedly to obtain accurate results. Results: Test result of "HBs Ag Mixed titer Performance panel" is obtained match rate compared S/CO unit standard with RIA method and EIA 3 reagents, CIA 2 reagents is that company A's reagent is 94.4% (17/18), 83.3% (15/18), B is 88.9% (16/18), 77.8% (14/18). Test result of "HBs Ag Low titer Performance panel" is obtain that EIA 2 reagents is shown 7 posive results, CIA 3 reagents is 11, and RIA method's company A's reagent is 3, B is 2 of 13 in low panel. "HBV surface antigen 86.76 IU/vial" tested dilution. A is obtain positive results to 600 times(0.14 IU/mL), B is 300 times (0.29 IU/mL). Case of "HBV human immunoglobulin 95.45 IU/vial", A is shown positive result to 10,000 times (9.5 mIU/mL) and B is 4,000 times (24 mIU/mL). Test result of "HBs Ag Working Standards 0.02~11.52 IU/mL" is shown that Company A's kit concentration level was 0.38IU/mL, company B was 2.23 IU/mL and higher level of concentration was positive results. Conclusion: When comparing various test reagents and RIA method according to National Standard substances for Hepatitis B test, we recognized that there were no significant trends between reagents. For hepatitis B virus antigen-antibody titers even in parts of the test up to 600 times the antigen, antibodies to 10,000 times the maximum positive results could be obtained. Therefore, we confirmed that results from Asan Medical Center are performed smoothly by reagents and system for hepatitis B virus test.

  • PDF

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.