• Title/Summary/Keyword: Mass yield

Search Result 698, Processing Time 0.031 seconds

Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei;Jian, Wang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.244-248
    • /
    • 2016
  • Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than $100^{\circ}C$, the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

EFFECTS OF INTERCROPPING, SEEDLING RATE AND FERTILIZER ON FODDER PRODUCTION IN THE LOW LYING AREA OF BANGLADESH

  • Sarker, N.R.;Giasuddin, M.;Islam, M.M.;Rahman, M.M.;Yasmin, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1994
  • The study was conducted at low lying areas in Pabna Sirajgong districts of Bangladesh. To observe the potentiality of bio-mass production two trials were conducted. In first trial maize intercropped with Khesari taking 15 experimental plots of each size $5m{\times}5m$ were arranged in 5 blocks having homogenous soil characteristics. The study showed that the bio-mass yield of sole maize and sole Khesari were 35.25 t/ha. and 56.80 t/ha. respectively and there was a significant difference (p < 0.01) among them. The results also showed that bio-mass yield of maize and Kherasi was higher ($70.04{\pm}6.25t/ha$, $98.88{\pm}10.77t/ha$ and $80.56{\pm}9.5t/ha$) compared to sole maize and sole Khesari and land equivalent ratio was also lower. For second trial, one hectare of land was divided into 16 experimental plots with 4 replications in each plot. Four levels of urea (0 kg/ha, 30 kg/ha, 45 kg/ha, and 60 kg/ha.) were applied to experimental plot. The seed rates were 98.8 kg/ha (farmer's practice), 86.45 kg/ha, 74.1 kg/ha and 61.75 kg/ha. average bio-mass yield of matikalai at different seed rates along with urea fertilizer ranged from 38.49 t/ha, to 65.35 t/ha. the highest seed rate along with highest fertilizer also correspond to the peak production (65.35 t/ha) and the lowest seed rate (61.75 kg/ha) along with the lowest fertilizer rate (30 kg/ha.) showed lowest production (38.49 t/ha.). Here, it was found that the bio-mass yield of matikalai increased with the incremental amount of seed, indicating significant effect (p < 0.05) of seed rates on the bio-mass yield of matikalai. On the other hand, fertilizer doses in different treatment combinations had significant effect (p < 0.05) on bio-mass yield. Two levels of seed rates at zero level of fertilizer were recommended : 86.45 kg/ha for the resource rich farmers and 61.75 kg/ha for the resource poor farmers.

Assessment of Flame Retardancy for Acrylonitrile Butadiene Styrene Containing Metal Powder and Flame Retardant (금속분말-난연제 함유 ABS의 난연 특성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.30-35
    • /
    • 2007
  • The flame retardancies by the addition of metal powder and flame retardant were evaluated to present as the fundamental data to decrease the fire hazard of polymers and life losses by suffocation and poisoning. For this study, the experiments of flame retardancy were conducted as follows : weight loss rate using thermogravimetric analysis, the measurement of the limiting oxygen index(LOI) and char yield. And smoke mass concentration and CO yield were measured. Acrylonitrile butadiene styrene containing metal powder and flame retardant reduced weight loss rate and increased LOI and char yield with the decreased smoke mass concentration and CO yield. It was found that the most effective complex was tricresyl phosphate-Mo complex.

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.

Manure Based Duckweed Production in Shallow Sink : Effect of Genera on Biomass and Nutrient Yield of Duckweed under the Same Nutritional and Management Conditions

  • Chowdhury, S.A.;Sultana, N.;Huque, K.S.;Huque, Q.M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.686-693
    • /
    • 2000
  • Biomass yield, nutritive value and nutrient utilization efficiency of different genera of duckweed (DW, Lemnaceae) under the same nutritional and management conditions were studied. Three genera of DW namely: Lemna perpusilla, Spirodela polyrhiza and Woljfia arrhiza, were cultivated in 18 plastic sinks each of $59{\times}54{\times}35cm^3$ size. Each sink contained approximately 80 L of water and was charged once with 6.648 kg of anaerobically fermented cow dung effluent. The seed rate for Spirodela, Lemna and Wolffia were 600, 400 and $600g/m^2$ respectively. Duckweed were harvested at 48 hours intervals. Media total N concentration for Lemna and Wolffia gradually increased with time. Growth of duckweed was measured by subtracting the inoculum from the total biomass production. Growth of Spirodela ceased within 4 days but Lemna and Wolffia continue to grow up to 34 days. Bio-mass yield was significantly (p<0.05) higher in Wolffia (906 kg/ha/d) than Lemna (631 kg/ha/d). Dry matter (DM) yield was very similar in Lemna (14.80 kg/ha/d) and Wolffia (14.57 kg/ha/d). The N content was non-significant higher in Lemna (5.45%) than Wolffia (5.00%) and Spirodela (4.6%). The crude protein (CP, $N{\times}6.25$) yield was non-significantly higher in Lemna (4.83 kg/ha/d) than Wolffia (4.32 kg/ha/d). The acid detergent fibre (ADF) content was the highest in Wolffia (28.59%), followed by Spirodela (19.47%) and Lemna (12.39%). Utilization efficiency of CP was 273 and 314% respectively for Wolffia and Lemna. However, similar efficiency values for Spirodela was only 1.5%. Considering the bio-mass yield, nutritive value and nutrient utilization efficiency, production performance of DW were in the order of Lemna>Wolffia>Spirodela under the present experimental conditions.

Vision-based Potato Detection and Counting System for Yield Monitoring

  • Lee, Young-Joo;Kim, Ki-Duck;Lee, Hyeon-Seung;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Purpose: This study has been conducted to develop a potato yield monitoring system, consisting of a segmentation algorithm to detect potatoes scattered on a soil surface and a counting system to count the number of potatoes and convert the data from two-dimensional images to masses. Methods: First, a segmentation algorithm was developed using top-hat filtering and processing a series of images, and its performance was evaluated in a stationary condition. Second, a counting system was developed to count the number of potatoes in a moving condition and calculate the mass of each using a mass estimation equation, where the volume of a potato was obtained from its two-dimensional image, and the potato density and a correction factor were obtained experimentally. Experiments were conducted to segment potatoes on a soil surface for different potato sizes. The counting system was tested 10 times for 20 randomly selected potatoes in a simulated field condition. Furthermore, the estimated total mass of the potatoes was compared with their actual mass. Results: For a $640{\times}480$ image size, it took 0.04 s for the segmentation algorithm to process one frame. The root mean squared deviation (RMSD) and average percentage error for the measured mass of potatoes using this counting system were 12.65 g and 7.13%, respectively, when the camera was stationary. The system performance while moving was the best in L1 (0.313 m/s), where the RMSD and percentage error were 6.92 g and 7.79%, respectively. For 20 newly prepared potatoes and 10 replication measurements, the counting system exhibited a percentage error in the mass estimation ranging from 10.17-13.24%. Conclusions: At a travel speed of 0.313 m/s, the average percentage error and standard deviation of the mass measurement using the counting system were 12.03% and 1.04%, respectively.

A Study on the Storage-Yield Relationship of Reseroir (저수지의 Storage-Yield에 관한 연구)

  • 이순탁;장인수
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.253-264
    • /
    • 1985
  • Basically, there are two ways viewing the reservoir storage-yield relationship., The most common viewpoint is the determination of the storage required at a given reservoir to supply a required yield. This type of problem is usually encountered in the planning and early design phases of a reservoir. The second viewpoint is the determination of yield from a given amount of storage. This often occurs in the final design phases or in re-evaluation of an existing reservoir for a more comprehensive analysis. The purpose of this study is to improve the present methodology estimating the storage-yield relationship for a reservoir design or a reservoir operation. The Residual Mass curve Technique, the slightly modified version of Low Flow Techniques and the Transition Probability Matrix Technique are reviewed and examined for the best fit technique to find the reservoir storage-yield realtionship. The historical data during 1917~1940 at the proposed Hongchun damsite and the synthetic data simulated by Thomas-Fiering model are utilized to examine the reservoir storge-yield relationship with three techniques in detail. After the three techniques which estimate the reservoir storage-yield relationship were reviewed extensively, it was concluded that the Residual Mass Curve Technique and the slightly modified version of Low Flow Techniques were suitable for a preliminary design, but the Transition Probability Matrix Technique Provided satisfactory results as a final design technique because it reflected the variation of a monthly yield as well as seasonlly.

  • PDF

Medium Concentration Influencing Growth of the Entomopathogenic Nematode Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens

  • Yoo, Sun-Kyun;Brown, Ian;Cohen, Nancy;Gaugler, Randy
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.644-648
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of the media is a key factor for improving in vitro mass production of entomopathogenic nematodes. This study reports the effect of medium concentration. The medium is a combination of carbohydrates, lipids, proteins, sats, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus liminescens. The overall optimal medium concentration for nematode recovery, hermaphrodite size, bacterial mass, infective juveniles (IJs) yield, and doubling time was 84 g/l. At this concentration rate, the doubling time of IJs production and the biomass of symbiotic bacteria was 1.6 days and 12.8 g/l, respectively. The maximum yield of $2.4{\times}{10^5}IJs/ml$ was attained within a one-generation cycle (eight days). The yield coefficient was $2.8{\times}{10^6}$ IJs/g medium, and the maximum productivity was $3.1{\times}{10^7}$ IJs per day. Medium concentration affected two independent factors, recovery and hermaphrodite size, which in turn influenced the final yield.

  • PDF

Simple solutions of an opening in elastic-brittle plastic rock mass by total strain and incremental approaches

  • Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.585-600
    • /
    • 2017
  • This study deals with simple solutions for a spherical or circular opening excavated in elastic-brittle plastic rock mass compatible with a linear Mohr-Coulomb (M-C) or a nonlinear Hoek-Brown (H-B) yield criterion. Based on total strain approach, the closed-form solutions of stresses and displacement are derived simultaneously for circular and spherical openings using original H-B and M-C yield criteria. Two simple numerical procedures are proposed for the solution of generalized H-B and M-C yield criteria. Based on incremental approach, the similarity solution is derived for circular and spherical openings using generalized H-B and M-C yield criteria. The classical Runge-Kutta method is used to integrate the first-order ordinary differential equations. Using three data sets for M-C and H-B models, the results of the radial displacements, the spreading of the plastic radius with decreasing pressure, and the radial and circumferential stresses in the plastic region are compared. Excellent agreement among the solutions is obtained for all cases of spherical and circular openings. The importance of the use of proper initial values in the similarity solution is discussed.