• 제목/요약/키워드: Mass standards

검색결과 465건 처리시간 0.025초

Development of an Isotope-Dilution Flow-Injection Electrospray/ Mass Spectrometric Method for the Accurate Determination of Glucosamine in Pharmaceutical Formulation

  • Kim, Gui-Nam;Kim, Byung-Joo;Ahn, Seong-Hee;Hwang, Eui-Jin;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.363-367
    • /
    • 2009
  • An isotope-dilution flow-injection electrospray/mass spectrometric method was developed for the accurate determination of glucosamine contents in pharmaceutical formulations. Samples were extracted by methanol. After spiking glucosamine-1-$^{13}C_1$ as an internal standard, the extracts were then analyzed by flow-injection ESI/MS in a selected ion monitoring (SIM) mode to detect [M+H]$^+$ ions of the analyte and its isotope analogue at m/z 180 and m/z 181, respectively. Confirmatory measurements were made by selectively monitoring the collisionally induced dissociation channels of m/z 180 $\rightarrow$ m/z 72 and m/z 181 $\rightarrow$73, respectively, to test the possibility of bias in the SIM method due to matrix interferences, but any significant bias in the SIM mode was not observed. Repeatability and reproducibility studies showed that the flow-injection ESI/MS method is a reliable and reproducible method which can provide a typical method precision of 1.0 %. Other results for the method validation are reported.

Determination of trace elements in food reference materials by instrumental neutron activation analysis

  • Cho, K.H.;Zeisler, R.;Park, K.W.
    • 분석과학
    • /
    • 제18권6호
    • /
    • pp.520-528
    • /
    • 2005
  • Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS)during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in the determination of certified values as it can eliminate the possibility of common error sources resulting from sample dissolution. In this study INAA procedure was used in determination of 23 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values.

Selected ion monitoring analysis of conjugated metabolites of methadone using biosynthetic internal standards for the study of methadone-diazepam interaction

  • Kang, Gun-Il
    • Archives of Pharmacal Research
    • /
    • 제6권1호
    • /
    • pp.7-16
    • /
    • 1983
  • A methadone-diazepam interaction study in rats was performed in which conjugated metabolites of methadone were analyzed using deuterated biosynthetic internal standards. Diazepam (5mg/kg) was given to rats through a cannulate djugular vein and a subcutaneous dose of methadone (10mg/kg) was given. Bile was collecte through the cannulate dbile duct over a period of 24 hours. The deuterium label of the internal standards was found to be stable under conditions of the prolonged incubation. There was no significant difference in the excretion of the metabolites between the control and the diazepam treated rats. Feasibility of using biosynthetic internal standards with selected ion monitoring was established for the drug metabolism and kinetic studies.

  • PDF

Revisions on the payline for overbreak in Tunnel

  • Park, T.;Ahn, B.;Baek, S.;Tae, Y.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.714-715
    • /
    • 2015
  • Drill and blast method has been most widely used in tunnel excavation, after NATM (New Austrian Tunneling Method) was introduced in 1983. The NATM method utilized mass of shotcrete to secure the bearing capacity of tunnels. Overbreak defined how much larger the actual excavation was than the planned. When it became larger, more shotcrete was required to fill in it Here, payline fixed allowable overbreak, referring to payable amounts of shotcrete. Since owner was not responsible for shotcrete exceeding payline, it was important to properly establish the standards for payline. Although the standards were provided in 'Poom-sam'(standardized quantity per unit), they did not properly reflect the actual conditions for excavation. Thus, this study reviewed existing domestic and foreign standards for overbreak, and estimated overbreak for each type of support using survey data, and finally provided the improvements on the current standards.

  • PDF

과도한 정보추구로 인한 미디어의 프라이버시 침해 사례 및 유형 분석 연구 (A Case Study of Privacy Invasion Caused by Excessive Information Seeking on Mass Media)

  • 이정미
    • 정보관리학회지
    • /
    • 제25권3호
    • /
    • pp.231-247
    • /
    • 2008
  • 본 연구는 정보추구의 과도성으로 인해 자행되는 프라이버시 침해를 살펴보고자 하는데 그 목적이 있다. 이를 위해 최근 5년간 미디어에서 볼 수 있었던 프라이버시 침해 사례를 종류별로 분석, 이 중 지나친 정보추구행동의 결과로 나타나는 침해 사례들을 분석하였다. 정보추구의 동기, 주체, 성격이라는 세 가지 기준, 다섯 가지 유형에 기반, 과도한 정보추구로 인해 발생하는 프라이버시 침해를 사례별로 소개했다. 환경변화에 따른 바람직한 정보추구 자세와 프라이버시 침해 방지를 위한 정보이용에 대한 몇 가지 고민과 제언으로 마무리하였다.

Development and Validation of Primary Method for the Determination of Glucose in Human Serum by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry and Comparison with Field Methods

  • Lee, Hwa Shim;Lee, Jong Man;Park, Sang Ryoul;Lee, Je Hoon;Kim, Yong Goo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1698-1702
    • /
    • 2013
  • Glucose is a common medical analyte measuring in human serum or blood samples. The development of a primary method is necessary for the establishment of traceability in measurements. We have developed an isotope dilution liquid chromatography tandem mass spectrometry as a primary method for the measurement of glucose in human serum. Glucose and glucose-$^{13}C_6$ in sample were ionized in ESI negative mode and monitored at mass transfers of m/z 179/89 and 185/92 in MRM, respectively. Glucose was separated on $NH_2P$-50 2D column, and the mobile phase was 20 mM $NH_4OAc$ in 30% acetonitrile/70% water. Verification of this method was performed by the comparison with NIST SRMs. Our results agreed well with the SRM values. We have developed two levels of glucose serum certified reference material using this method and distributed them to the clinical laboratories in Korea as samples for proficiency testings. The expended uncertainty was about 1.2% on 95% confidence level. In proficiency testings, the results obtained from the clinical laboratories showed about 3.6% and 3.9% RSD to the certified values. Primary method can provide the traceability to the field laboratories through proficiency testings or certified reference materials.

Basics of Ion Mobility Mass Spectrometry

  • Lee, Jong Wha
    • Mass Spectrometry Letters
    • /
    • 제8권4호
    • /
    • pp.79-89
    • /
    • 2017
  • Ion mobility mass spectrometry (IM-MS) combines the advantages of ion mobility spectrometry (IMS) and MS for effective gas-phase ion analysis. Separation of ions based on their mobilities prior to MS can be performed without a great loss in other analytical figures of merit, and the extra dimension of analysis offered by IM can be beneficial for isomer and complex sample analyses. In this review, basic principles of IMS and IM-MS are described in addition to an introduction to various IMS techniques and commercial IM-MS instruments. The nature of collision cross-section (${\Omega}_D$), an important parameter determining the transport properties of ions in IMS, is also explained in detail.

Feasibility of Using Graphite Powder to Enhance Uranium Ion Intensity in Thermal Ionization Mass Spectrometry (TIMS)

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.102-105
    • /
    • 2016
  • This study explored the feasibility of using a carburization technique to enhance the ion intensity of isotopic analysis of ultra-trace levels of uranium using thermal ionization mass spectrometry (TIMS). Prior to fixing uranium samples on TIMS filaments, graphite powder suspended in nitric acid was deposited on rhenium filaments. We observed an enhancement of $^{238}U^+$ intensity by a factor of two when carburization was used, and were able to roughly optimize the amount of graphite powder necessary for carburization. The positive shift in heating current when evaporating filaments upon carburization implies that uranium was chemically altered by carburization, when compared to normal fixation processes. The good agreement between our method and known standards down to an ultra-trace level shows that the proposed technique can be applied to isotopic uranium analysis down to abundances of ~10 pg.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • 제5권1호
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • 분석과학
    • /
    • 제35권5호
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.