• Title/Summary/Keyword: Mass source

Search Result 1,441, Processing Time 0.03 seconds

Cultural Conditions for Mass Production of Bacillus subtilis CAP141 (Bacillus subtilis CAP141의 고농도 배양조건)

  • 조정일;박흥섭
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.85-98
    • /
    • 1997
  • Cultural conditions for mass production of the antagonistic bacteria, Bacillus subtills CAP141 against pathogens causing major airborne diseases to apple trees, effects of temperature, pH, carbon and nitrogen source in the culture broth were investigated. The bacterial growth was most vigorous when the temperature and pH of the culture broth was 30~35$^{\circ}$C and 7, respectively. As for carbon source, dextrose was best followed in order by dextrose(monosaccharide) > sucrose(disaccharide) $\geq$ saccharose (market disaccharides) > starch (polysaccharieds). Among different sugars, bacterial growth was favored by in the order of brown, black and white supars, indicating that the bacterial growth might be promoted by the minor elements presented as impurities in the less purified sugars. As for nitrogen source, organic forms were better to bacterial growth than inorganic forms, that is polypeptone was best followed in order by soy sauce, soybeen milk and inorganic nitrogens. Differences in bacterial growth among different forms of inorganic nitrogen were negligible.

  • PDF

Development of High-Sensitivity Ion Sources for Residual Gas Analyzer

  • Park, Chang-Jun;Han, Cheol-Su;An, Sang-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.104.2-104.2
    • /
    • 2013
  • A residual gas analyzer (RGA) system has been developed in this laboratory. Characteristics of the RGA system parts such as ion source, quadrupole mass filter and sensitivity are introduced. Some efforts have been made to improve performance of the two types of ion sources, open ion source (OIS) and closed ion source (CIS). A metal mesh was placed onto the electron beam entrance of the CIS anode tube to block the filament field penetration. Sensitivity of the CIS ion sources with and without the mesh was compared by mass spectra of SF6 gas (97% He base) introduced into the CIS anode through a needle valve. About ten-times improvement in the RGA sensitivity was observed for the CIS with the mesh in the electron entrance. Computer simulation showed an axi-symmetric anode potential distribution and improved focusing of the electron beam inside the anode tube with the mesh.

  • PDF

MAPPING STUDY OF MASSIVE CLOUD CORES

  • WEI Y;WU Y;WANG Y;Xu D;Ju B
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.291-293
    • /
    • 2005
  • Using 13.7 m telescope of Qinghai station of NAO, PMO at Delin Ha, 43 IRAS sources were mapped with $^{13}CO\;J=1-0\;C^{18}O\;J=1-0$ and CO J=1-0. Each source has one or more cores. The distances of these cores range from 1 pc to several pc, and the masses from $10^2\;M_{\bigodot}$ to $10^5\;M_{\bigodot}$. High velocity outflows were detected. The mass, momentum and energy of these massive cores are larger than those of the low mass ones. With radio, IRAS, MSX data, stellar source distribution were investigated, and sourceless cores that deviate from infrared sources were identified. They are potential high mass star formation sites.

Modeling of non-isothermal CO2 particle leaked from pressurized source: I. Behavior of single bubble

  • Chang, Daejun;Han, Sang Heon;Yang, Kyung-Won
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-31
    • /
    • 2012
  • This study investigated the behavior of a non-isothermal $CO_2$ bubble formed through a leak process from a high-pressure source in a deep sea. Isenthalpic interpretation was employed to predict the state of the bubble just after the leak. Three modes of mass loss from the rising bubble were demonstrated: dissolution induced by mass transfer, condensation by heat transfer and phase separation by pressure decrease. A graphical interpretation of the last mode was provided in the pressure-enthalpy diagram. A threshold pressure (17.12 bar) was identified below which the last mode was no longer present. The second mode was as effective as the first for a bubble formed in deep water, leading to faster mass loss. To the contrary, only the first mode was active for a bubble formed in a shallow region. The third mode was insignificant for all cases.

Individual Particle Analysis for Developing a Source Profile of Yellow Sands (황사의 오염원분류포 개발을 위한 개별입자분석)

  • 강승우;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.565-572
    • /
    • 2000
  • To quantitatively estimate mass contribution of long-range transported yellow sand, their sources should be separated independently from various local soil sources having similar elemental compositions. While it is difficult to estimate total mass loadings of pure yellow sand by traditional bulk analysis, it can be clearly solved by an particle-by-particle analysis. To perform this study, two yellow sand samples and three local soil samples were collected by a mini-volume sampler. These samples were three analyzed using a scanning electron microscope(SEM) equipped with an energy dispersive x-ray analyser (EDX) was used to obtain basic chemical information of individual yellow san particles. A total of 19 elements in a single particle were measured to develop a source profile with newly created homogeneous particle classes (HPCs) as chemical variables. The present study showed that the yellow sand samples as well as three local soil samples were characterized with reasonably well created HPCs. Finally the mass fraction of each HPC in each sample was calculated and then compared each other.

  • PDF

Direct Anlysis of Impurities in Solides with Glow Discharge Mass Spectrometry

  • Ki Beom Lee;Dae Won Moon;Kwang Woo Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.524-529
    • /
    • 1989
  • A glow discharge mass spectrometric(GDMS) analytical method was developed for direct analysis of impurities in solids. Ions extracted from a glow discharge ion source with a sample as a cathode were analyzed by a quadrupole mass filter. Ion extractions were carried out through differentially-pumped orifices biased to positive and negative potentials. Operating parameters of the glow discharge source such as discharge current, orifice-to-cathode distance, energy analyzer setting and bias voltages have been optimized. The developed GDMS was applied to the analysis of KSS copper-base alloy standards certified by Korea Standards Research Institute(KSRI). In the analysis, the reproducibility and the detection limits were estimated to be about 2.5% RSD, and in the low ppm range, respectively.

Measurement of VOCs Concentrations at Jeonju Industrial Area and Emission Characteristics (전주공단지역의 주요VOCs 배출농도 측정 및 배출원별 특성 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2007
  • It will be necessary to make proper management plans to preserve the air quality in good level for the public. In order to make these plans, source information and detail emission inventories of the city and near industrial areas should be given. However, lack of the source measurements data makes us more difficult to complete the source inventory. VOC source Inventory could be utilized for the feasibility study to estimate the contribution of VOC sources presenting to the receptor such as residential area. It may give policy maker an idea how to control the air quality, and improve their social environment in the area. This study shows data that measured VOCs concentrations from the local industrial areas in Jeonju during from May 2005 to January 2006. The samples were collected from the near sources in 7 major factories in the industrial park as well as 5 general sources in near city Jeonju area to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; chemical, food, paper, wood, metal, non-metal (glass), and painting (coating) industries. The 5 general sources are sampled from tunnel, gasoline gas station, dry cleaning shop, printing (copy) shop, and road pavement working place in urban area. To understand the near source effect at receptor, samples from the 2 receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected and analyzed for the comparison to source concentration. The mass contributions of the speciated VOC to total mass of VOCs measured from the different sources and ambient (2 receptors) were presented and discussed.

Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source (저온 열원으로부터 최대 동력을 생산하기 위한 유기랭킨사이클(ORC)에 관한 연구)

  • Kim, Kyoung-Hoon;Han, Chul-Ho;Kim, Gi-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • ORC(organic Rankine cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. This work analyzes performance of ORC with superheating using low-temperature energy sources in the form of sensible energy. Maximum mass flow rate of a working fluid relative to that of a source fluid is considerd to extract maximum power from the sources. Working fluids of R134a, $iC_4H_{10}$ and $C_6C_6$, and source temperatures of $120^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ are considered in this work. Results show that for a fixed source temperature thermal efficiency increases with evaporating temperaure, however net work per unit mass of source fluid has a maximum with respect to the evaporating temperature in the range of low source temperature. Results also show that the maximum power extraction is possible with R134a for the source temperature of $120^{\circ}C$, with $iC_4H_{10}$ for $200^{\circ}C$, and with $C_6C_6$ for $300^{\circ}C$.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.