• Title/Summary/Keyword: Mass propagation

Search Result 467, Processing Time 0.025 seconds

Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method

  • Hosseini, Seyed Amin;Abolbashari, Mohammad Hossein;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.529-545
    • /
    • 2016
  • In this article, the generalized coupled non-Fickian diffusion-thermoelasticity analysis is carried out using an analytical method. The transient behaviors of field variables, including mass concentration, temperature and displacement are studied in a strip, which is subjected to shock loading. The governing equations are derived using generalized coupled non-Fickian diffusion-thermoelasticity theory, which is based on Lord-Shulman theory of coupled thermoelasticity. The governing equations are transferred to the frequency domain using Laplace transform technique and then the field variables are obtained in analytical forms using the presented method. The field variables are eventually determined in time domain by employing the Talbot technique. The dynamic behaviors of mass concentration, temperature and displacement are studied in details. It is concluded that the presented analytical method has a high capability for simulating the wave propagation with finite speed in mass concentration field as well as for tracking thermoelastic waves. Furthermore, the obtained results are more realistic than that of others.

Permeability Prediction of Rock Mass Using the Artifical Neural Networks (인공신경 망을 이용한 암반의 투수계수 예측)

  • Lee, In-Mo;Jo, Gye-Chun;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • A resonable and economical method which can predict permeability of rock mass in underground is needed to overcome the uncertainty of groundwater behavior. For this par pose, one prediction method of permeability has been studied. The artificial neural networks model using error back propagation algorithm, . one of the teaching techniques, is utilized for this purpose. In order to verify the applicability of this model, in-situ permeability results are simulated. The simulation results show the potentiality of utilizing the neural networks for effective permeability prediction of rock mass.

  • PDF

Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

  • Park, Sa-Rah;Jeon, Ho-Cheol;Kim, Rok-soon;Kim, Jong-Hyeon;Kim, Seung-Jin;Cho, Junghee;Jang, Soojeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

Dormancy-breaking and Germination of Chelidonium majus L. subsp. asiaticum H. Hara Seeds by Stratification and Gibberellins

  • Boran Ji;Hayan Lee;Kyungtae Park;Sang Yeob Lee;Bo-Kook Jang;In Hwan Chae;Chung Youl Park;Sung Pil Kwon;Deug-Chan Lee;Ju-Sung Cho
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.796-804
    • /
    • 2022
  • The demand for Chelidonium majus L. subsp. asiaticum H. Hara is expected to increase due to its pharmacological properties such as antibacterial, antioxidant, and anti-inflammatory effects. However, an effective propagation system for this species has not yet been established. This study was conducted to analyze the seed dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara native to Korea and establish a mass propagation system. The dormancy type was primarily classified by analyzing the general information of the collected seeds. The seed dormancy breaking was investigated by comparing the effects of cold stratification (0, 2, 4, 8, 10, or 12 weeks) with warm stratification (S, summer temperature, 25/15℃) and intermediate temperature stratification (A, autumn temperature, 15/10℃) of alternating temperature stratification (S12-A4 or S12-A8 weeks). After dormancy break, 500 mg/L GA3 and GA4+7 treatment replaced cold stratification and improved seed germination. The results of this study are expected to provide basic data for future seed propagation and mass propagation by analyzing the dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara seeds.

In Vitro Propagation of Medicinal Herbs in Korea

  • An, Chanhoon;Song, Jeongho
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.77-81
    • /
    • 2018
  • Mass production of forest medicinal plants is related to quality control of raw medicinal materials. Plant tissue culture is an important technology to produce high-quality plant materials. Numerous factors are reported to influence the success of in vitro regeneration of medicinal plants. Embryogenesis is known to be the most effective techniques and it has developed in some medicinal plant species. Various in vitro cultural condition for direct and/or indirect somatic embryogenesis systems have developed in Epimedium koreaum, Bupleurum falcatum, Paeonia lactiflora, Chrysanthemum zawadskii, Houttuynia cordata etc. In this study, we provide the present statue and information of in vitro propagation techniques that is able to apply as an efficient system for rootstock propagation system of forest medicinal plants.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Mass Propagation of Sundew, Drosera rotundifolia L. through Shoot Culture

  • Jang, Gi-Won;Park, Ro-Dong
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.97-100
    • /
    • 1999
  • In order to establish in vitro propagation method of sundew, Drosera rotundifolia L., the effects of MS medium concentration, cytokinin type and concentration, pH, and auxin type and concentration on shoot proliferation and root formation were investigated using shoots at 3 month after seed germination. The highest shoot production was obtained with the half strength of MS ($\frac{1}{2}$ MS) medium than with any other strength of MS medium tested. Addition of kinetin or BA in $\frac{1}{2}$ MS medium was strongly suppressed shoot proliferation. The suppression of shoot proliferation was more effective in BA-supplemented $\frac{1}{2}$ MS medium than kinetin-supplemented. The optimum pH of the media for shoot proliferation was pH 5.7-6.7. Shoots were subcultured in $\frac{1}{2}$ MS medium supplemented with 0.5mg/L 2,4-D for rooting every 8 weeks. All subcultured shoots produced extensive root systems after 5 to 6 week culture. Plantlets after root development were planted in plastic pots filled with moss. The survival rate of plantlets was almost 100%. On subculturing every 8 weeks, hundreds of the plants were propagated from a single plant within a year.

  • PDF

Numerical Analysis for Wave Propagation with Vegetated Coastal Area (연안해역에서의 수변식생에 의한 파란변형에 관한 수치해석)

  • LEE SEONG-DAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.63-68
    • /
    • 2006
  • Recently, it has been widely recognized that coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors play a major role in the functions of water quality and ecosystems. However, the studies on physical and numerical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of coastal vegetations. In general, Vegetation flourishing along the coastal areas attenuates the incident waves, through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation rate in the complex topography with the vegetation area. Based on the numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through the comparisons of these results, the effects of the vegetation properties, wave properties and model parameters such ac the momentum exchange coefficient have been clarified.