Browse > Article
http://dx.doi.org/10.7732/kjpr.2022.35.6.796

Dormancy-breaking and Germination of Chelidonium majus L. subsp. asiaticum H. Hara Seeds by Stratification and Gibberellins  

Boran Ji (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
Hayan Lee (Seed Vault Center, Baekdudaegan National Arboretum)
Kyungtae Park (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
Sang Yeob Lee (Kiban Operation Department (KOD) production planning, The Kiban Co. Ltd.)
Bo-Kook Jang (Garden and Plant Resources Division, Korea National Arboretum)
In Hwan Chae (Garden Promotion Department, Korea Arboreta and Gardens Institute)
Chung Youl Park (Division of Wild Plant Seed Research, Baekdudaegan Natuonal Arboretum)
Sung Pil Kwon (Research & Development Center, Chungdam CDC JNPharm LLC.)
Deug-Chan Lee (Department of Biomedical Technology, Kangwon National University)
Ju-Sung Cho (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
Publication Information
Korean Journal of Plant Resources / v.35, no.6, 2022 , pp. 796-804 More about this Journal
Abstract
The demand for Chelidonium majus L. subsp. asiaticum H. Hara is expected to increase due to its pharmacological properties such as antibacterial, antioxidant, and anti-inflammatory effects. However, an effective propagation system for this species has not yet been established. This study was conducted to analyze the seed dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara native to Korea and establish a mass propagation system. The dormancy type was primarily classified by analyzing the general information of the collected seeds. The seed dormancy breaking was investigated by comparing the effects of cold stratification (0, 2, 4, 8, 10, or 12 weeks) with warm stratification (S, summer temperature, 25/15℃) and intermediate temperature stratification (A, autumn temperature, 15/10℃) of alternating temperature stratification (S12-A4 or S12-A8 weeks). After dormancy break, 500 mg/L GA3 and GA4+7 treatment replaced cold stratification and improved seed germination. The results of this study are expected to provide basic data for future seed propagation and mass propagation by analyzing the dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara seeds.
Keywords
Conditional dormancy; Intermediate simple MPD; Morphophysiological dormancy; Non-deep simple MPD; Seed propagation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abbad, A., R. Belaqziz, K. Bekkouche and M. Markouk. 2011. Influence of temperature and water potential on laboratory germination of two moroccan endemic thymes: Thymus maroccanus Ball. and Thymus broussonetii Boiss. Afr. J. Agric. Res. 6(20):4740-4745.
2 Baskin, C.C. and J.M. Baskin. 2003. When breaking seed dormancy is a problem try a move-along experiment. Native Plants J. 4(1):17-21.
3 Baskin, C.C. and J.M. Baskin. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Elsevier, San Diego, CA (USA).
4 Baskin, C.C., P. Milberg., L. Andersson and J.M. Baskin. 2002. Non-deep simple morphophysiological dormancy in seeds of the weedy facultative winter annual Papaver rhoeas. Weed Res. 42(3):194-202.
5 Baskin, J.M. and C.C. Baskin. 1981. Seasonal changes in the germination responses of buried Lamium amplexicaule seeds. Weed Res. 21(6):299-306.   DOI
6 Baskin, J.M. and C.C. Baskin. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35(8):492-498.   DOI
7 Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14(1):1-16.   DOI
8 Bewley, J.D. and M. Black. 1982. The Release from Dormancy: Physiology and Biochemistry of Seeds in Relation to Germination, Springer, Berlin, Heidelberg, Germany. pp. 126-198.
9 Bewley, J.D., K. Bradford and H. Hilhorst. 2012. Seeds: Physiology of Development, Germination and Dormancy; Springer Science and Business Media, New York, NY (USA).
10 Fedi, F., C.M. O'Neill, G. Menard, M. Trick, S. Dechirico, F. Corbineau, C. Bailly, P.J. Eastmond and S. Penfield. 2017. Awake1, an ABC-type transporter, reveals an essential role for suberin in the control of seed dormancy. Plant Physiol. 174(1):276-283.   DOI
11 Finch-Savage, W.E. and G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Phytol. 171(3):501-523.   DOI
12 Froud-Williams, R.J., D.S.H. Drennan and R.J. Chancellor. 1984. The influence of burial and dry-storage upon cyclic changes in dormancy, germination and response to light in seeds of various arable weeds. New Phytol. 96(3):473-481.   DOI
13 Grime, J.P., G. Mason, A.V. Curtis, J. Rodman and S.R. Band. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69(3):1017-1059.   DOI
14 Haeussler, S. and J.C. Tappeiner. 1993. Effect of the light environment on seed germination of red alder (Alnus rubra). Can. J. For. Res. 23(7):1487-1491.   DOI
15 Harper, K.T. and R. Van Buren. 2004. Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period. West. North Am. Nat. 64(4):482-491.
16 Hedden, P. and S.G. Thomas. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444(1):11-25.   DOI
17 Hilhorst, H.W.M. 1995. A critical update on seed dormancy. I. primary dormancy. Seed Sci. Res. 5(2):61-73.   DOI
18 Jung, H.M., S.J. Seo, J.B. Kim, N.W. Kim, and E.Y. Joo. 2011. The study of physiological activities from Chelidonium majus var. asiaticum extract. J. Invest. Cosmetol. 7(4):359-366.   DOI
19 Karlsson, L.M. and P. Milberg, 2007. A comparative study of germination ecology of four Papaver Taxa. Ann. Bot. 99(5):935-946.   DOI
20 Karssen, C.M. 1976. Two sites of hormonal action during germination of Chenopodium album Seeds. Physiol. Plant. 36(3):264-270.   DOI
21 Kim, G.M., J.M. Chung, J.Y. Jung, H.J. Choi and S.Y. Lee. 2022. Germination characteristics in seeds of Broussonetia kazinoki Siebold ex Siebold & Zucc (Moraceae) native to east asia. Korean J. Plant Res. 35(1):36-43 (in Korean).
22 Kim, H.J. and H. Na. 2021. Seed dormancy and germination in Oenanthe stolonifera as affected by temperature and gibberellic acid. Hortic. Environ. Biotechnol. 62(1):1-8.   DOI
23 Kim, M.S., B.Y. Hwang, S.G. Choe, M.K. Lee, J.S. Ro and K.S. Lee. 2000. Alkaloidal components of Chelidonii fructus. Korean J. Pharmacogn. 31(4):390-393 (in Korean).
24 Ko, C.H., S.Y. Lee, S.I. Oh, E.H. Park, M. Gil, S.H. Kim and M.J. Yoon. 2022. Seed dormancy and germination in Iris laevigata (Iridaceae), a rare species in Korea. Flower Res. J. 30(2):75-81 (in Korean).   DOI
25 Korea Biodiversity Information System (KBIS). (2021) Available online: http://www.nature.go.kr/kbi/plant/pilbk/selectPlantPilbkDtl.do?plantPilbkNo=26468 (accessed on 20. 9. 2021).
26 Kucera, B., M.A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4):281-307.   DOI
27 Lee, S.Y., Rhie, Y.H., Kim, Y.J. and K.S. Kim. 2012. Morphological and morphophysiological dormancy in seeds of several spring ephemerals native to Korea. Flower Res. J. 20(4):193-199 (in Korean).   DOI
28 Lu, Q., Z.S. Zhang, R.T. Zhan and R. He. 2018. Proteomic analysis of Zanthoxylum nitidum seeds dormancy release: influence of stratification and gibberellin. Ind. Crops Prod. 122:7-15.   DOI
29 Maji, A.K. and P. Banerji. 2015. Chelidonium majus L. (Greater Celandine) - a review on its phytochemical and therapeutic perspectives. Int. J. Herb. Med. 3(1):10-27.   DOI
30 Mamut, J., D.Y. Tan, C.C. Baskin, and J.M. Baskin. 2014. Intermediate complex morphophysiological dormancy in seeds of the cold desert sand dune geophyte Eremurus anisopterus (Xanthorrhoeaceae; Liliaceae sl.). Ann. Bot. 114(5):991-999.   DOI
31 Martin, A.C. 1946. The comparative internal morphology of seeds. Am. Midl. Nat. 36(3):513-660.   DOI
32 Martinkova, Z. and A. Honek, 1997. Germination and seed viability in a dandelion, Taraxacum officinale Agg. Ochrana Rostlin. 33(2):125-133.
33 Nikolaeva, M.G. 2004. On criteria to use in studies of seed evolution. Seed Sci. Res. 14(4):315-320.   DOI
34 Roberts, H.A. and J.E. Neilson. 1982. Seasonal changes in the temperature requirements for germination of buried seeds of Aphanes arvensis L. New Phytol. 92(2):159-166.   DOI
35 Ryu, S.H., Y.H. Rhie, S.Y. Lee, C.H. Ko, J.H. Lee, H.J. Lee and K.C. Lee. 2017. Effect of after-ripening, cold stratification, and GA3 treatment on Lychnis wilfordii (Regel) maxim seed germination. Hortic. Sci. Technol. 35(5):525-533.   DOI
36 Smiris, P., E. Pipinis, M. Aslanidou, O. Mavrokordopoulou, E. Milios and A. Kouridakis. 2006. Germination study on Arbutus unedo L. (Ericaceae) and Podocytisus caramanicus Boiss. & Heldr. (Fabaceae). J. Biol. Res. 5:85-91.
37 Willemsen, R.W. 1975. Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds. Am. J. Bot. 62(1):1-5.   DOI
38 Yamauchi, Y., M. Ogawa, A. Kuwahara, A. Hanada, Y. Kamiya and S. Yamaguchi. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16(2):367-378.   DOI