• 제목/요약/키워드: Mass loading effect

검색결과 135건 처리시간 0.026초

암반 불연속면이 동적 전단응력파에 미치는 영향 (Effect of Rock Discontinuities on Dynamic Shear Stress Wave)

  • 손무락
    • 한국지반환경공학회 논문집
    • /
    • 제19권12호
    • /
    • pp.25-32
    • /
    • 2018
  • 본 논문은 암반에 형성되어 있는 불연속면이 지진 또는 발파에 의해 유발되어 암반을 통해 전달되는 동적 전단응력파에 미치는 영향에 대해서 수치해석적 매개변수 연구를 통해 조사하고 그 결과를 제시하는 것이다. 수치해석적 매개변수 연구를 수행하기 위해서 먼저 이론적 해를 얻을 수 있는 조건에 대해서 타당성해석을 수행하고 그 결과를 이론해와 비교한 후 암반조건 및 불연속면 조건을 달리한 경우에 대해서 매개변수해석을 수행하였다. 암반조건으로는 암반 초기 현장응력 상태가 고려되었으며 불연속면조건으로서는 불연속면의 전단강도 정수인 마찰각과 점착력이 고려되었다. 또한 불연속면의 경사각 또한 매개변수로서 고려되었다. 이와 같은 다양한 조건의 매개변수연구를 통해 전단응력파의 변화를 파악한 결과, 매질을 통해 전달되는 동적 전단응력파는 암반의 초기 현장응력조건 뿐만 아니라 불연속면의 전단강도 및 경사각 조건에 크게 영향을 받는 것으로 나타났다. 이를 통해 지진 또는 발파유발 동적하중이 절리형성 암반지층이나 서로 다른 지층으로 이루어진 토사지층을 통과할 때, 지층의 초기응력 상태와 더불어 불연속면 또는 지층경계면의 특성 등을 반드시 고려하여 주변시설물 및 구조물에 대한 동적영향을 파악해야 할 것으로 판단된다.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

선박용 로딩암에 적용할 수 있는 융합해석기술에 관한 연구 (Convergence analysis technology for ship loading arm)

  • 이대희;노대경;이근호;박성수;장주섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.258-268
    • /
    • 2017
  • 본 논문에서는 하나의 해석 소프트웨어(SimulationX)로 로딩암의 유압회로 해석기술과 다물체 동역학 해석기술을 융합시키는 것을 목표로 한다. 움직이는 질량의 회전중심에 변화가 있거나, 중력장에서의 거동을 구현하기 어려운 기존의 유압회로해석기술의 한계성을 극복하고자 하는 연구이다. 연구를 진행하는 순서는 다음과 같다. 먼저 유압회로를 구성하는 부품들의 제원을 해석모델에 반영하여 신뢰성을 확보한다. 신뢰성이 검증된 단품해석모델을 이용하여 유압회로를 모델링하고, 로딩암의 MBS(Multi Body System)모델을 구성한다. 그 후에 유압회로의 해석모델과 MBS모델을 융합하여 회로의 해석결과가 MBS모델에 정확히 반영되는지 확인한다. 이러한 융합해석모델은 시제품이 없어도 대상의 동적거동을 예측 할 수 있으므로 개발비를 절감하는 효과를 가져다준다.

RMR에 따른 변형률 의존 수리전도도 변화 해석 (Modification of Strain-dependent Hydraulic Conductivity with RMR)

  • 윤용균
    • 터널과지하공간
    • /
    • 제13권1호
    • /
    • pp.44-51
    • /
    • 2003
  • 응력 재분포에 의해 발생하는 수리전도도의 변화를 평가하기 위하여 변형률 의존 수리전도도 변화방정식을 사용하였다. 주요 입력 변수는 탄성계수 감소비와 응력 재분포에 의해 발생한 변형률이다. 무결암에서부터 완전히 파쇄된 암반조건을 나타내기 위하여 탄성계수 감소비 대신에 탄성계수 감소비와 RMR간의 상관관계를 이용하였다. 전단 변형에 따른 팽창이 수리전도도의 증가에 영향을 미치지만 그 영향 정도는RMR에 따라 달라졌으며, 인장변형률이 절리에 작용하는 경우 암반의 RMR이 감소함에 따라 수리전도도는 증가하는 것으로 나타났다. 암반에 작용하는 응력 상태에 따라 수리전도도의 변화도 다른 것으로 나타났는데, 수평응력 대 수직응력의 비가 다른 이방성 응력 상태가 수리전도도의 변화에 가장 큰 영향을 미치는 것으로 나타났다.

수심이 얕은 저수지에서 용존산소 동적 모니터링을 통한 인 내부부하 평가 (Evaluation of Internal Phosphorus Loading through the Dynamic Monitoring of Dissolved Oxygen in a Shallow Reservoir)

  • 박형석;최선화;정세웅;지현서;오정국;전항배
    • 환경영향평가
    • /
    • 제26권6호
    • /
    • pp.553-562
    • /
    • 2017
  • 최근 농업용 저수지는 용수공급과 함께 지역의 관광, 문화, 위락시설 등으로 활용되고 있다. 그러나 많은 농업용 저수지들은 부영양호로 분류되며 높은 유기물 오염도를 보이고 있다. 특히, 1945년 이전에 준공된 노후화된 농업용 저수지의 44.7%는 농업용수 수질 환경기준을 초과하고 있다. 노후화된 저수지의 경우 외부기원 오염부하 이외에 누적된 퇴적물로부터 발생하는 내부부하는 영양염류 공급에 중요한 역할을 한다. 본 연구의 목적은 수심이 얕은 M 저수지(평균 수심 약 1.7 m)를 대상으로 2015년과 2016년에 수심별 수온과 저층 용존산소(DO) 농도를 연속 측정하여 저층 수환경의 동적변화를 모니터링함으로써 영양염류의 내부 부하 가능성을 조사하는데 있다. 또한, 물질수지해석을 통해 내부 인부하가 저수지 전체 인부하량에 미치는 영향에 대해 평가하였다. 연구결과 수심이 얕은 M 저수지에서 약한 수온성층과 강한 DO 성층 현상이 나타났다. 그리고, 저수지 저층에서 DO의 동적변화를 관찰한 결과, 여름철 무강우 기간동안 지속적인 저산소 (DO 2 mg/L 미만) 상태가 2015년과 2016년에 각각 87일과 98일간 발생하였다. DO 농도는 대기온도 강하와 강우발생 기간 동안 간헐적으로 증가하였다. 물질수지분석결과, 수온상승과 함께 조류성장이 촉진되는 8월에는 $PO_4-P$ 내부 부하량이 무강우시 전체 부하량 대비 2015년과 2016년에 각각 37.9%와 39.7%로써 큰 비중을 차지하였다. 따라서 지속적인 저층 저산소 상태가 유지되는 경우에는, 퇴적층의 영양염류 용출을 억제하기 위한 DO 공급 대책이 유효 할 것으로 판단된다.

Strain rate effect of steel-concrete composite panel indented by a hemispherical rigid body

  • Zhao, Weiyi;Wang, Lin;Yang, Guotao;Wang, Ziguo;Gao, Zepeng;Guo, Quanquan
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.703-710
    • /
    • 2020
  • This paper presents numerical and theoretical investigations on the strain rate in steel-concrete composite (SC) panels under low-velocity impact of a hemispherical rigid body. Finite element analyses were performed on five specimens with different loading rates. The impact energy was kept constant to eliminate its influence by simultaneously altering the velocity and mass of the projectile. Results show that the strain rate in most parts of the specimens was low and its influence on bearing capacity and energy dissipation was limited in an average sense of space and time. Therefore, the strain rate effect can be ignored for the analyses of global deformation. However, the strain rate effect should be considered in local contact problems. Equations of the local strain and strain rate were theoretically derived.

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.