• 제목/요약/키워드: Mass flow-meter

검색결과 124건 처리시간 0.022초

수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.

혼합냉매 R-407C의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C)

  • 노건상;오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

수평관내 이산화탄소의 증발 열전달 특성 (Evaporative Heat Transfer Characteristics of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;김영률;오후규
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1134-1139
    • /
    • 2004
  • The evaporative heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 7.75 mm. The experiments were conducted at mass flux of 200 to 500 kg/m$^2$s, saturation temperature of -5 to 5$^{\circ}C$, and heat flux of 10 to 40kW/m$^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much, and the effect of mass flux on evaporative heat transfer of $CO_2$ is much smaller than that of refrigerant R-22 and R-134a. In comparison with test results and existing correlations, correlations failed to predict the evaporative heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporative heat transfer coefficient of $CO_2$ in a horizontal tube.

An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

  • Kim, Shin-Woong;Lee, Seung-Jae;Park, Cheol-Young;Kang, Donghoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.330-343
    • /
    • 2016
  • This paper presents results of an experimental investigation of vortex-induced vibration (VIV) of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, $f^*$, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity ($V_r$) range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with $f^*$.

CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구 (An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger)

  • 이진관;장영수;김서영;김용찬
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가 (Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline)

  • 신은허;정기문;김경필;최태호;채선하;조용우
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

중공사막에서의 물질전달 특성에 관한 연구 (A Study on the Characteristics of Mass Transfer in Hollow Fiber Membranes)

  • 김기범;김종석;김종수;유일수;이왕로;김성종
    • 멤브레인
    • /
    • 제14권2호
    • /
    • pp.142-148
    • /
    • 2004
  • 본 연구는 호흡부전환자를 위한 진동형 혈관 내 폐 보조장치를 사용하여 산소전달효율을 향상시키기 위한 연구이다. 유량은 점프와 유량을 사용하여 조정하였다. 가진 장치는 압전 진동자, 함수 발생기와 전력 증폭기로 구성하였다. 기체의 유량은 120 cm 길이의 중공사를 통하여 6 L/min까지 하였으며 압전 진동자로 가진 하였다. PVDF 센서와 FRF를 사용하여 VIVLAD에서 발생하는 주파수를 검출하였다. 실험결과, 최대 진폭이 발생하고 중공사들에 진동이 전달되어 최대 산소전달속도가 발생함을 확인할 수 있었다. 이 최대 진폭은 다양한 유속과 각각의 모듈에서 35 Hz 영역에서 발생함을 확인할 수 있었다.

대체냉매를 사용한 평활관 및 마이크로핀관 곡관부내 증발 열전달 특성 (Evaporation heat transfer characteristics inside the U-bend of the smooth and the microfin tube using alternative refrigerant)

  • 조금남;김병기
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1207-1217
    • /
    • 1997
  • The present work experimentally investigated the effects of mass flux, heat flux, inlet quality on the heat transfer performance inside the U-bend of smooth and microfin tube using R-22 and R-407C refrigerants. The parameters were 200 and 400 kg/m$^{2}$ s for mass flux, 6 and 12 kw/m$^{2}$ for heat flux, 0.1 and 0.2 for inlet quality under the pressure of 0.65 MPa. The apparatus consisted of the test section of four straight sections and three U-bends, preheater, condenser, refrigerant pump, mass flow meter etc. The average heat transfer coefficient at the downstream straight section after U-bend was affected by U-bend due to the centrifugal force and mixing of two-phase flow in the U-bend. The average heat transfer coefficient at the U-bend was 4 ~ 33 % higher than that at the straight section. The average heat transfer coefficients were affected in the order of mass flux, heat flux and inlet quality. The average heat transfer coefficients in the microfin tube were lager by 19 ~ 49% and 33 ~ 69% than that in the smooth tube at the straight section and at the U-bend separately. The average heat transfer coefficients for R-407C were larger by 33 ~ 41% and 17 ~ 29% than that for R-22 in the smooth tube and the microfin tube separately.

수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구 (Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube)

  • 이상재;김대훈;최준영;이재헌;권영철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF