• 제목/요약/키워드: Mass aerosol

검색결과 281건 처리시간 0.024초

저 누드센 영역에서 구형 포집체상의 에어로졸 물질 전달 (Mass Transfer of Aerosol onto Spherical Collector at Low Knudsen Number)

  • 정창훈
    • 한국대기환경학회지
    • /
    • 제21권5호
    • /
    • pp.547-555
    • /
    • 2005
  • In this study, an analytical expression for aerosol mass transfer at spherical collector in the low Knudsen number region was obtained. Happel's zero shear stress cell model was extended in the low Knudsen number region and the result was compared with numerical solution results. The zero vorticity model based on the Kuwabara's cell model was also extended in the low Knudsen number region and compared with Happel's results. The results showed that both analytic and numerical solution agree very well with each other in low Knudsen number region. Happel's zero shear stress model also agrees with Kuwabara's zero vorticity model without significant loss of accuracy. The obtained solution converges to the original solution of Lee et al. (1999) when Knudsen number approaches to zero. Subsequently, this study derived most general type of analytic solution for aerosol mass transfer of spherical collector including the finite Knudsen number region.

Theoretical simulation on evolution of suspended sodium combustion aerosols characteristics in a closed chamber

  • Narayanam, Sujatha Pavan;Kumar, Amit;Pujala, Usha;Subramanian, V.;Srinivas, C.V.;Venkatesan, R.;Athmalingam, S.;Venkatraman, B.
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2077-2083
    • /
    • 2022
  • In the unlikely event of core disruptive accident in sodium cooled fast reactors, the reactor containment building would be bottled up with sodium and fission product aerosols. The behavior of these aerosols is crucial to estimate the in-containment source term as a part of nuclear reactor safety analysis. In this work, the evolution of sodium aerosol characteristics (mass concentration and size) is simulated using HAARM-S code. The code is based on the method of moments to solve the integro-differential equation. The code is updated to FORTRAN-77 and run in Microsoft FORTRAN PowerStation 4.0 (on Desktop). The sodium aerosol characteristics simulated by HAARM-S code are compared with the measured values at Aerosol Test Facility. The maximum deviation between measured and simulated mass concentrations is 30% at initial period (up to 60 min) and around 50% in the later period. In addition, the influence of humidity on aerosol size growth for two different aerosol mass concentrations is studied. The measured and simulated growth factors of aerosol size (ratio of saturated size to initial size) are found to be matched at reasonable extent. Since sodium is highly reactive with atmospheric constituents, the aerosol growth factor depends on the hygroscopic growth, chemical transformation and density variations besides coagulation. Further, there is a scope for the improvement of the code to estimate the aerosol dynamics in confined environment.

다단입자채집기와 입자계수기 자료를 이용한 서울 에어러솔 밀도 계산 (Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul)

  • 김정은;이해영
    • 한국대기환경학회지
    • /
    • 제26권3호
    • /
    • pp.298-304
    • /
    • 2010
  • In order to calculate the aerosol bulk densities of $PM_{1.0}$ and $PM_{10}$, aerosol mass and number concentrations were measured for the period of December 2008~April 2009. $PM_{1.0}$ and $PM_{10}$ mass concentrations were measured using a cascade impactor (Micro-Orifice Uniform Deposit Impactor, MOUDI) while their volume concentrations were calculated based on number concentrations from an environmental dust monitor (EDM). Normal aerosol size distribution fitting functions were retrieved for number size distribution since aerosols < $2.5{\mu}m$ were measured from the EDM. Strong correlation was found between $PM_{1.0}$ mass and volume concentrations obtained with a $R^2$ of 0.95. The calculated average bulk densities of $PM_{1.0}$ and $PM_{10}$ were $1.97{\pm}0.33g/cm^3$ and $2.15{\pm}0.18g/cm^3$, respectively.

서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화 (Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan)

  • 이시혜;김영성;김상우;윤순창
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

지리산 국립공원 해발 865 m 지점에서 대기에어로졸입자의 입경별 질량농도 특성 (Mass Size Distribution of Atmospheric Aerosol Particles Collected at 865 m High of Jirisan National Park)

  • 류혜지;박정호
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.29-36
    • /
    • 2017
  • Aerosol mass size distributions were investigated at 865 m high the of Jirisan national park. A nanosampler cascade impactor was used to collect aerosols. The atmospheric aerosol particles had a unimodal mass size distribution, which peaked at $0.5-1.0{\mu}m$, and a mass aerodynamic diameter of $1.13{\mu}m$. The annual average concentrations of TSP, $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ were $20.9{\mu}g/m^3$, $19.3{\mu}g/m^3$, $14.9{\mu}g/m^3$, $10.7{\mu}g/m^3$, $5.3{\mu}g/m^3$, $1.2{\mu}g/m^3$, respectively. TSP concentrations were below $30{\mu}g/m^3$ during the sampling period. On average $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ made up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조 (Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter)

  • 박대훈;조윤행;황정호
    • 한국입자에어로졸학회지
    • /
    • 제12권4호
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.

AERONET 선포토미터 데이터를 이용한 동북아시아 지역 대기 에어로졸 종류별 광학적 농도 변화 특성 연구 (A Study on the Variation of Aerosol Optical Depth according to Aerosol Types in Northeast Asia using Aeronet Sun/Sky Radiometer Data)

  • 노영민
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.668-676
    • /
    • 2018
  • This study has developed a technique to divide the aerosol optical depth of the entire aerosol (${\tau}_{total}$) into the dust optical depth (${\tau}_D$) and the pollution particle optical depth (${\tau}_P$) using the AERONET sun/sky radiometer data provided in Version 3. This method was applied to the analysis of AERONET data observed from 2006 to 2016 in Beijing, China, Seoul and Gosan, Korea and Osaka, Japan and the aerosol optical depth trends of different types of atmospheric aerosols in Northeast Asia were analyzed. The annual variation of ${\tau}_{total}$ showed a tendency to decrease except for Seoul where observation data were limited. However, ${\tau}_D$ tended to decrease when ${\tau}_{total}$ were separated as ${\tau}_D$ and ${\tau}_P$, but ${\tau}_P$ tended to increase except for Osaka. This is because the concentration of airborne aerosols, represented by Asian dust in Northeast Asia, is decreased in both mass concentration and optical concentration. However, even though the mass concentration of pollution particles generated by human activity tends to decrease, Which means that the optical concentration represented as aerosol optical depth is increasing in Northeast Asia.

후집속 방법을 이용한 에어로졸 TOF 질량분석기의 질량분해능 향상 연구 (Study on increasing the mass resolution in aerosol TOF mass spectrometer by using post focusing method)

  • 김덕현;양기호;차형기;김도훈;이상천
    • 분석과학
    • /
    • 제18권6호
    • /
    • pp.483-490
    • /
    • 2005
  • TOF 비행시간을 이용한 에어로졸 질량분석기에서 질량분석기의 분해능은 발생하는 이온의 초기에너지와 이온이 움직이는 진행방향에 따라 달라진다. 고출력 펄스형 레이저에 의하여 에어로졸로부터 용발되어 이온화된 원소들은 다른 속도로 사방으로 퍼져 나가게 되어 분해능 저하를 초래하는데 이를 방지하기 위해서 1차 가속된 이온들을 서로 다른 에너지로 후집속하여 같은 시간에 이온센서에 도달하도록 하는 장치에 대하여 연구를 수행하였다. 후집속 전위를 $90^{\circ}$ 방향으로 진행하는 이온을 중심으로 서로 다른 방향으로 걸어 줌으로써 TOF 영역을 지나 센서로 도입되는 이온의 도착 시간이 크게 개선되었음을 알 수 있었으며, 이를 실증하기 위하여 레이저 유도 이온을 만들고 후집속 장치를 구성하여 최적의 시간지연시간 및 전압 조건을 도출하여 그 성능을 증가시켰다.

Derivation of aerosol vertical profiles in Seoul based on O4 measurements using UV scanning spectrometer

  • Lee, Hanlim;Hwang, JungBae;Son, Yoonhee
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.325-329
    • /
    • 2013
  • This present study describes an application of UV scanning spectrometer $O_4$ data for retrieval of aerosol vertical profiles in Seoul during the measurement period that includes two Asian dust event days. The results show large variations of aerosol load in vertical and temporal scales. Large variations in aerosol were observed at 1 km in height during the daytime in the measurement period when the Asian dust events took place. The aerosol load, however, was found to be largest at the surface compared to those retrieved at the higher atmospheric layers. The results also clearly identified the diurnal patterns of aerosol vertical distributions. The aerosol load was high in the morning and noon whereas it was low in the afternoon. This study demonstrates that UV scanning spectrometer observations of the oxygen dimer can serve as a potential method for determination of atmospheric aerosol vertical distributions and optical properties.