• Title/Summary/Keyword: Mass Transport

Search Result 803, Processing Time 0.026 seconds

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

Comparison of ELLAM and LEZOOMPC for Developing an Efficient Modeling Technique (효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석)

  • Suk Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • This study summarizes advantages and disadvantages of numerical methods and compares ELLAM and LEZOOMPC to develop an efficient numerical modeling technique on contaminant transport. Eulerian-Lagrangian method and Eulerian method are commonly used numerical techniques. However Eulerian-Lagrangian method does not conserve mass globally and fails to treat boundary in a straightforward manner. Also, Eulerian method has restrictions on the size of Courant number and mesh Peclet number because of time truncation error. ELLAM (Eulerian Lagrangian Localized Adjoint Method) which has been popularly used for past 10 years in numerical modeling, is known for overcoming these numerical problems of Eulerian-Lagrangian method and Eulerian method. However, this study investigates advantages and disadvantages of ELLAM and suggests a change for the better. To figure out the disadvantages of ELLAM, the results of ELLAM, LEZOOMPC (Lagrangian-Eulerian ZOOMing Peak and valley Capturing), and visual MODFLOW are compared for four examples having different mesh Peclet numbers. The result of ELLAM generates numerical oscillation at infinite of mesh Peclet number, but that of LEZOOMPC yields accurate simulations. The simulation results suggest that the numerical error of ELLAM could be alleviated by adopting some schemes in LEZOOMPC. In other words, the numerical model which combines ELLAM with backward particle tracking, forward particle tracking, adaptively local zooming, and peak/valley capturing of LEZOOMPC can be developed for not only overcoming the numerical error of ELLAM, but also keeping the numerical advantage of ELLAM.

Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior (바이오매스 고형연료의 반탄화 특성 및 반탄화물의 연소특성에 관한 연구)

  • Lee, Weon Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.86-94
    • /
    • 2015
  • Torrefaction is a thermochemical process proceeded at the temperature around $250^{\circ}C$ in an inert gas condition. By torrefaction, the hemicellulose portions contained in biomass are broken down to change into the volatile gas which is removed from biomass eventually. The main purpose of biomass torrefaction is to improve the energy density of the biomass to minimize the transport energy consumption, though the flammability can be elevated for transportation. In this study two types of solid biomass fuel, waste wood and rice straw, were torrefied at various temperature range from $200^{\circ}C$ to $300^{\circ}C$ to evaluate the torrefied biomass characteristics. In addition torrefied biomass were tested to evaluate the combustion characteristics using TGA (Thermogravimetric Analysis). After the torrefaction of biomass, the C/H (carbon to hydrogen ratio) and C/O (carbon to oxygen ratio) were measured for aquisition of bio-stability as well as combustion pattern. Generally C/H ratio implies the soot formation during combustion, and the C/O ratio for bio-stability. By torrefaction temperature at $300^{\circ}C$, C/H ratio and C/O ratio were increased by two times for C/H and three times for C/O. The torrefied biomass showed similar TGA pattern to coal compared to pure biomass; that is, less mass decrease at lower temperature range for torrefied biomass than the pure biomass.

Spatial Distribution and Variation of Long-range Transboundary Air Pollutants Flux during 1997~2004 (장거리이동 대기오염물질 이동량의 공간적 분포와 변화 추이(1997~2004))

  • Han J. S.;Kim Y. M.;Ahn J. Y.;Kong B. J.;Choi J. S.;Lee S. U.;Lee S. J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2006
  • Aircraft measurements have been executed for the purpose of monitoring the long range transported air pollution and estimation of air pollutant in/out-flux over the Yellow sea. Total 74 missions of measurements have been done since 1997, mainly in spring and fall. The main study domain was over $124^{\circ}$E $/sim$ $124^{\circ}$E, $35^{\circ}$N $/sim$ $37^{\circ}$N below 3,000m. In long-term trends, mixing ratios of $SO_{2}$N were around 2 ppbv expect in summer ( < 1 ppbv). NOx exhibited 24 ppbv and have no clear annual trends over the Yellow Sea. The concentrations of 03 were 51, 58, 41 ppbv in spring, summer and fall-winter, respectively. Backward trajectory was performed for three days to investigate the source regions of the air mass. Six regions were divided around Korea peninsular centering at $36^{\circ}$N, $126^{\circ}$E. I, II, III, IV and V regions represents in sequence northeast China and Siberia, Sandong peninsula and Balhae gulf, Sanghi and southern China, the south Pacific included Jeju island and the East sea included Japan. L region correspond to the airmass from Korea peninsula. Influx of $SO_{2}$N was approximately five times higher than outflux in yearly flux variation and showed a decreasing long-term trend since 1998. NOx outflux was average 0.095 ton/km/hr and three times higher than $SO_{2}$ outflux. In/out flux of 03 showed even distribution in yearly basis except 2002 (influx 5.45 ton/km/hr). The transported amounts from I, II, III regions were much higher than those from other region. In seasonal flux variation, influx levels of gas phases were the lowest in summer and the levels gradually increased from fall toward spring. As a result, transport of pollutants begins from fall and prevails in winter and spring.

A Study on Surface Drift Velocity in Water Waves (파랑에 의한 수표면 부유속도에 관한 연구)

  • 김태인;최한규;권혁재
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.329-339
    • /
    • 1995
  • To clarify the surface drift velocity in gravity waves. experimental data measured in a two-dimensional wave flume were compared with theoretical values predicted by the Stokes 2nd- and 5th- order theories as well as by the conduction solution or Longuet-Hinggins (1953). Relative water depth and wave height ranged 0.040.13. For a closed flume condition, Stokes 2nd-order theory gives lower values than the experimental data, and the differences increase as both relative water depth and wave height increase. Based on the observed data of the surface drift velocities, a modified Parabolic model of the return current velocity Profile has been suggested, which is Proved to fit better to the existing experimental data of mass transport velocity profiles in a closed wave flume than the models of Longuet-Hinggins (1953) and Stokes wave theories do.

  • PDF

Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea (춘천시 PM2.5의 질량농도 및 이온성분 농도의 특성에 관한 연구)

  • Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.682-692
    • /
    • 2008
  • Fine particles ($PM_{2.5}$) were collected and analyzed from November 2005 through August 2007 in Chuncheon, Korea to investigate the characteristics of $PM_{2.5}$ and its ionic constituents. The average $PM_{2.5}$ concentration during the study period was $39{\mu}g/m^3$, which is almost two times higher than the annual US NAAQS $PM_{2.5}$ standard of $15{\mu}g/m^3$. $PM_{2.5}$ concentrations were higher in spring and winter than in summer and fall. During spring, Asian Dust events dramatically enhanced $PM_{2.5}$ concentrations, and long-range transport of $PM_{2.5}$ emitted in industrial area of China often occurred during winter based on trajectory analysis. Contribution of $PM_{2.5}$ to $PM_{10}$ concentrations ranged from $72{\mu}g/m^3$ during Asian Dust events to $457{\mu}g/m^3$, indicating that a large portion of $PM_{2.5{\sim}10}$ was transported from China during Asian Dust events. Among the major ionic constituents ${SO_4}^{2-}$ showed the highest concentration, followed by ${NH_4}^+$, ${NO_3}^-$ and ${NO_2}^-$. Chuncheon appeared to be ${NH_4}^+$ rich environment, indicating that $(NH_4)_{2}SO_4$ and ${NH_4}{NO_3}$ were the predominant forms of ${NO_3}^-$ and ${SO_4}^2$ in $PM_{2.5}$. Haze has frequently occurred in Chuncheon since So-Yang dam was constructed in 1973. Haze events were observed on 23 days during sampling period, and the average $PM_{2.5}$ concentration was approximately 1.6 times higher during haze events than during non-haze events. This result suggests that haze enhances the secondary aerosol formation because the aerosol spontaneously absorbs water to form a saturated salt solution, deriving a significant increase in the mass of the particle.

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles (상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링)

  • Lee, Jeongbin;Kim, Ui Seong;Yi, Jae-Shin;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-355
    • /
    • 2012
  • Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

A Study on the SCM Integration & Green Growth Strategy of Logistic Company in Korea (물류기업의 SCM통합과 녹색성장을 위한 대응방안에 대한 연구)

  • Jin, Yun-Jun;Lee, Yu-Bin;Bae, Ki-Hyung
    • International Commerce and Information Review
    • /
    • v.15 no.2
    • /
    • pp.3-23
    • /
    • 2013
  • In 1997, 180 countries signed the Kyoto Protocol in Kyoto, Japan. The Kyoto Protocol came into force in February 2005. The agreement calls for industrialized nations to cut greenhouse gas emissions by 5 percent from 1990 levels by 2008 to 2012. One of those polices is a modal shift that change from road freight to sea, inland waterway and railroad transportation that is eco-friendly. The increase of road freight brings road congestion, accidents, logistic costs, air pollution and greenhouse gases. Railroads are superior than the other modes of transportation in mass transportability, high speed, timeliness, safety and environmental-friendliness, but the railway industry has been pushed behind in competition. Korean railroads were used by passengers and freight transport popularly until the middle of 20th century, however, by the sudden change of logistics environments, a shaving time efficiency being most important, railroad logistic lost its competitive power against the transportation by truck. From the research which sees consequently investigated a various policy, a system and a law about Chinese logistics industry and present condition of the Chinese goods enterprise and instance analysis of the large Chinese corporation that branch out to undeveloped markets led and a Chinese logistics industry and problem point escape hereafter the heightening of competitiveness plan which is rational under prsenting boil.

  • PDF

The Effect of Diluent Gases on the Growth Behavior of CVD SiC (희석기체가 화학증착 탄화규소의 성장거동에 미치는 영향)

  • 최두진;김한수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Silicon carbide films were chemically vapor deposited onto graphite substrates using MTS(Ch3SiCl3) as a source and Ar or H2 as a diluent gas. The experiments were performed at a fixed condition such as a de-position temperature of 130$0^{\circ}C$, a total pressure of 10 torr, and a flow rate of 100 sccm for each MTS and carrier gas. The purpose of this study is to consider the variation of the growth behavior with the addition of each diluent gas. It is shown that the deposition rate leads to maximum value at 200 sccm addition ir-respective of diluent gases and the deposition rate of Ar addition is faster than that of H2 one. It seems that these characteristics of deposition rate are due to varying interrelationship between boundary layer thick-ness and the concentration of a source with each diluent gas addition, when overall deposition rate is con-trolled by mass transport kinetics. The preferred orientation of (220) plane was maintained for the whole range of Ar addition. However, above 200 sccm addition, especially that of (111) plane was more increased in proportion to H2 addition. Surface morphologies of SiC films were the facet structures under Ar addition, but those were gradually changed from facet to smooth structures with H2 addition. Surface roughness be-came higher in Ar, but it became lower in H2 with increasing the amount of diluent gas.

  • PDF