• 제목/요약/키워드: Mass Transfer Number

검색결과 395건 처리시간 0.021초

수직형 흡수기 성능에 미치는 흡수기 전열관의 직경과 길이의 영향 (Effect of Diameter and Length on the Absorption Performance in a Vertical Absorber Tube)

  • 서정훈;조금남
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1214-1222
    • /
    • 2001
  • The present study investigated the effect of diameter and length on the absorption performance of a vertical falling film type absorber using $LiBr-H_2$O solution of 60 wt%. The parameters were diameter of absorber (17.2, 23.4, 31.1 mm), length of absorber (771, 1150, 1528 mm), and film Reynolds numbers (50, 70, 90, 110, 130, 150). As the diameter of the absorber was increased, the absorption mass flux, Sherwood number, heat flux, and heat transfer coefficient were increased, in which Sherwood number and heat transfer coefficient were increased up to 13% and 30% respectively. As the length of the absorber was increased, the total absorption rate and heat transfer coefficient were increased by 37% and 35% respectively, while the absorption mass flux was decreased.

  • PDF

배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰 (Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer)

  • 윤필현;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석 (Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive)

  • 조형희;원정호;류구영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

수평관군에서 리튬브로마이드 수용액 막의 수증기 흡수과정에 대한 비흡수가스의 영향 (Effects of non-absorbable gases in the absorption process of water vapor Into the Lithium Bromide-water solution film on horizontal tube bank)

  • 김병주;권기석
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.218-225
    • /
    • 2000
  • In the present study, the effects of film Reynolds number (60∼200) and volumetric content of non-absorbable gases (0∼10%) in water vapor on the absorption process of aqueous LiBr solution were investigated experimentally. The formation of solution film on the horizontal tubes of six rows were observed to be complete for Re>100. Transition film Reynolds number were found to exist above which the Nusselt number and Schmidt number diminishes with solution flow rate. As the concentration of non-absorbable gases increased, mass transfer rate decreased more seriously than heat transfer rate did. The degradation effects of non-absorbable gases seemed to be significant especially when small amount of non-absorbable gases were introduced to the pure water vapor.

  • PDF

자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구 (Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface)

  • 서형준;국건;이준식;이상우
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

폭기공정의 물질전달 계수와 기체 포집율 및 소요동력의 상관관계에 대한 비교연구 (Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process)

  • 박상규;양희천
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.415-421
    • /
    • 2017
  • 환경규제의 강화에 따라 수처리 비용이 증가하는 추세이므로 폭기공정의 에너지 이용효율을 제고할 수 있는 소요동력에 대한 보다 정량적인 연구가 필요하다. 본 논문은 폭기공정의 물질전달 특성을 규명하기 위해 물질전달 계수와 기체 포집율 및 소요동력에 대한 상관관계식을 제시하였다. 소요동력이 커지면 기체 포집율은 감소하고 레이놀드 수는 증가하며, 혼합유동 선단 도달거리와 확산도가 증대되므로 물질전달 계수는 증가하였다. 물질전달 계수와 기체 포집율 및 소요동력의 상관관계 규명을 위해 제시한 실험식은 최대 약 ${\pm}10%$의 오차 범위에서 실험결과와 일치하였다.

회전하는 사각덕트 유로에서 벽면 유출홀에 따른 열전달 특성 변화( ll ) -유출유량 변화에 따른 영향 - (Change of Heat Transfer Characteristics in a Rotating Channel of . Square Duct at Wall with Bleed Holes ( II ) - Effects of Exit Mass Flow Rate -)

  • 김상인;김경민;이동현;전윤흥;조형희
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.907-913
    • /
    • 2005
  • The present study has been conducted to investigate convective heat/mass transfer in the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5mm and its spacing is ( p/d:4.9) about five times of hole diameter. Exit mass flow rate through bleed holes is $0\%,\;10\%\;and\;20\%$ of the main mass flow rate respectively. rotation number is fixed 0.2. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by exit mass flow rate through bleed holes and Coriolis force of rotating channel for fixed Reynolds number. The heat transfer on the leading surface is decreased due to Coriolis force. However the total heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding.

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number -)

  • 강승구;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.

후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달의 전산해석 (Numerical Study of Turbulent Mass Transfer around a Rotating Stepped Cylinder)

  • 윤동혁;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2378-2383
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream the step. Main focus was placed on the correlation between turbulent fluctuation and concentration field. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with the same flow configuration.

  • PDF

역미셀을 이용한 Lysozyme 추출에 대한 물질 전달 (Mass Transfer of Lysozyme Extraction Using Reversed Micelles)

  • 전병수;김석규;윤성옥;송승구
    • KSBB Journal
    • /
    • 제16권3호
    • /
    • pp.241-245
    • /
    • 2001
  • Mass transfer rates have been measured for the extraction of enzyme from aqueous solution into a reverse-micelle phase at $25^{\circ}C$. The 420 mL vessel was carefully designed to maintain a planar interface between the aqueous and solvent phases, so allowing precise measurement of interfacial area, has been investigated. Sodium di-2-ethylhexyl sulfosuccinate(AOT) was the surfactant used. Factors varied included: agitator speed, pH, ionic strength and surfactant concentration. Samples were taken from the solvent phase at 15min intervals, and the amount of enzyme extracted was measured by UV absorption at 280 nm. The observed Sherwood numbers for the aqueous phase $Sh_1$were correlated interms of the aqueous phase Reynolds number $Re_1$, and modified Schmidt number $Sc_1$. $Sh_1=0.664Re_1^{0.5}Sc_1^{0.33}$

  • PDF