• Title/Summary/Keyword: Mass Transfer Number

Search Result 395, Processing Time 0.029 seconds

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel (유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

R-22 Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 응축에 관한 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

Numerical Study on the change of Absorption Characteristics by Change of Flow pattern in the Vertical Falling Film Absorber (수직 액막 흡수관의 유동변화에 따른 흡수성능 변화에 관한 해석적 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.90-96
    • /
    • 2003
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of LiBr solution. In the present study, the behavior of laminar-wavy falling film in the vertical absorber was studied analytically and experimentally. The change of absorption performance on mean film thickness, wave amplitude, wave celerity was analysed. The heat and mass transfer equations are solved simultaneously to give the temperature and concentration variations at the LiBr solution/refrigeration vapor interface and at the wall. Effects of uniform film, wavy film and film Reynolds number on the heat and mass transfer coefficients have been estimated. The analytical results of the uniform and wavy falling film in the bare tube was higher than experimental result for $Rd_{t}<100$. The absorption performance showed the maximum at the wavy film by the insert device(spring).

  • PDF

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

Effects of Duct Aspect Ratio on Heat Transfer in Wavy Duct of Heat Exchanger of Gas Turbine (가스터빈용 열교환기의 주름진 덕트에서 종횡비 변화가 열전달 특성에 미치는 영향)

  • Kim, Han Ho;Hwang, Sang Dong;Cho, Hyung Hee;Cho, Jae Ho;Jeon, Seung Bae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.339-344
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics in wavy ducts of primary surface heat exchanger. Experiments using a naphthalene technique are carried out to determine the local transfer characteristics for flow in the corrugated wall duct. The aspect ratios of the rectangular duct cross-section are 7.3, 4.7 and 1.8 with a corrugation angle of $145^{\circ}$. The Reynolds numbers, based on the duct hydraulic diameter, are ranged from 1000 to 5000. The local heat/mass transfer measurement is conducted in the spanwise directions. The results show that Tayler-Gortler vortices exist on the pressure surface. Flow separation on the suction surface appears at a high Reynolds number resulting in a sharp decrease in the local transfer rates, but relatively high transfer rates are obtained in the reattachment region.

  • PDF

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

An Experimental Study on In-Plate Evaporation Heat Transfer and Flow Characteristics for Automobile (자동차용 증발기 판 내의 증발 열전달 및 유동 특성에 관한 실험적 연구)

  • Kwak, Kyung-Min;Joo, Sang-Woo;Jung, Woo-Youl;Kim, Taek-Keun;Kim, Kwang-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • An experimental study was performed to evaluate the in-plate evaporation heat transfer and flow characteristics of a evaporator used in automobile. Two test-cores with different heat transfer area, bead-shape and bead-array were tested, A type and B type. For the heat transfer, Nusselt number for B type test-core reaches a value nearly equal to the one for A type test-core, in the whole range of equivalent Reynolds number. But, for the same mass flow rate of refrigerant, hA for B type test-core becomes higher with the increase of the mass quality of refrigerant than for A type test-core. In a flow visualization experiment, the wake zone of refrigerant circulating at u-turn position of plate is observed.

A Study on Combustion Characteristics of End-Burning Hybrid Propulsion System with the Various Fuel (End-burning 하이브리드 추진시스템의 연료에 따른 연소특성 연구)

  • Lee Seung-Chul;Kim Jin-Kon;Kim Soo-Jong;You Woo-Jun;Lee Jung-Pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • In this study, experimental studies were performed the combustion characteristics of end- burning hybrid propulsion system. PMMA, PE were used as fuel and gas oxygen as oxidizer. The regression rate depend on oxidizer flow rate also on thermodynamic properties of fuel. as result, empirical formula for regression rate was deduces with oxidizer flow rate and mass transfer coefficient B number.

  • PDF