• Title/Summary/Keyword: Mass Transfer Kinetics

Search Result 79, Processing Time 0.025 seconds

Sorbent Characteristics of Montmorillonite for Ni2+Removal from Aqueous Solution

  • Ijagbemi, Christianah Olakitan;Kim, Dong-Su
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • Sorption of $Ni^{2+}$ in aqueous solution was studied using montmorillonite. The experimental and equilibrium data fitted well to the Langmuir isotherm model. From the kinetics data for nickel sorption onto montmorillonite, the diffusion of $Ni^{2+}$ inside the clay particles was the dorminant step controlling the sorption rate and as such more important for $Ni^{2+}$ sorption than the external mass transfer. $Ni^{2+}$ was sorbed due to strong interactions with the active sites of the sorbent and the sorption process tends to follow the pseudo second-order kinetics. Thermodynamic parameters (${\Delta}G^{\circ},\;{\Delta}H^{\circ},\;{\Delta}S^{\circ}$) indicated a non spontaneous and endothermic adsorption process while the positive low value of the entropy change suggests low randomness of the solid/solution interface during the uptake of $Ni^{2+}$ by montmorilionite. Heavy metals such as $Ni^{2+}$ in aqueous bodies can effectively be sorbed by montmorillonite.

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

Kinetics of Cultivating Large Quantities of Mammalian Cells (tPA생산을 위한 동물 세포 배양에 관한 동력학적 연구)

  • 이현용
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.282-286
    • /
    • 1988
  • Growth kinetic parameters for mass cultivation of Chinese Hamster Ovary (CHO) cells are estimated by measuring oxygen uptake rates. It Is found that there is strong correlation between cell growth and oxygen consumption, showing that correlation factor is 0.83. Derived linear model predicts actual cell density very well. It tells that oxygen uptake rate can play important role in indirectly measuring cell density when conventional method of estimating cell density is no longer meaningful due to heavy cell clumpings. Cell yield per oxygen consumption, $Y_{\chi}o$ and mass transfer coefficient for oxygen, Ka are also estimated as 1.26$\times$10$^4$cells/mmole $O_2$ consumed and 1.01/h, respectively. Average specific growth rate over all runs is 2.891/day for CHO cells with producting 2 grams of tPA per day under continuous perfusion operations.

  • PDF

Sorption Kinetics of Hydrophobic Organic Compounds in Wetland Soils (습지 토양에서 소수성 유기화합물질의 흡착 동력학)

  • Park, Je-Chul;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.295-303
    • /
    • 2003
  • Sorption kinetics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in natural wetland soils was investigated using laboratory batch adsorbers. One -site mass transfer model (OSMTM) and two compartment first-order kinetic model (TCFOKM) were used to analyze sorption kinetics. Analysis of OSMTM reveals that apparent sorption equilibria were obtained within 10 to 75 hours for chlorobenzene and 2 hours for phenanthrene, respectively. For chlorobenzene, the sorption equilibrium time for surface soil was longer than that of deeper soil presumably due to physico-chemical differences between the soils. For phenanthrene, however, no difference in sorption equilibrium time was observed between the soils. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption kinetics, The fraction of fast sorption ($f_1$) and the first-order sorption rate constants for fast ($k_1$)and slow ($k_2$) compartments were determined by fitting experimental data to the TCFOKM. The results of TCFOKM analysis indicate that the sorption rate constant in the fast compartment($k_1$) was much greater than that of slow fraction($k_2$) . The fraction of the fast sorption ($f_1$) and the sorption rate constant in the fast compartment($k_1$) were increasing in the order of increasing $k_{ow}$, phenanthrene > chlorobenzene. The first-order sorption rate constants in the fast ($k_1$) and slow ($k_2$) compartments were found to vary from $10^{-0.1}\;to\;-10^{1.0}$ and from $10^{-4}\;to-10^{-2}$, respectively.

High Efficiency Process Development for Methane Production by Anaerobic Fermentation (혐기성 발효에 의한 고효율 메탄 제조 공정 개발)

  • 선용호;황경엽
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 1991
  • This study is to investigate the kinetics of anaerobic process, the effect of mass transfer on process, and the characteristics of the conventional anaerobic bioreactor, and develop new high efficiency bioreactor. In the new bioreactor wastewater containing highly concentrated organic materials, was treated without diluting wastewater. In this experiment the high COD removal rate (about 88%) and gas production(about 200l/d) was showed with short residence time(1.5 day). This performance is about 10 times as large as the conventional reactor.

  • PDF

A study for gas distribution in separators of molten carbonate fuel cell (용융 탄산염 연료전지의 분리판 내 연료 분배 해석)

  • Park, Joonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

Modeling the effect of mass transfer on the kinetics of fructo-oligosaccharide production by immobilized cells (고정화 세포에 의한 Fructo-oligosaccharides 생산 반응메카니즘에서 물질전달 영향에 대한 수학적 모델)

  • 윤종원;전영중이민규송승구
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.266-271
    • /
    • 1993
  • The effective diffusion coefficients of glucose, sucrose and fructo-oligosaccharides in Ca-alginate gel beads at high concentration of sucrose solutions were investigated at $50^{\circ}C$. A mathematical model for the kinetics of fructo-oligosaccharide production using immobilized cells was proposed and compared with experimental results varying the bead size, the substrate concentration and the bead ratio. Very low values of diffusion coefficients ranging $1.2-7.6\times10^{-7}\textrm{cm}^2$/sec were obtained, and the predicted results were in good agreement with experimental ones in all cases tested.

  • PDF

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.