• Title/Summary/Keyword: Mass Properties

Search Result 2,754, Processing Time 0.029 seconds

Preparation of Vanadium Dioxide by Hydrogen Reduction of Vanadium Pentoxide and its Thermochromic Properties (오산화바나듐의 수소 환원에 의한 이산화바나듐의 제조 및 열변색 특성)

  • Choi, Seung Hoon;Lee, Chun Boo
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.61-66
    • /
    • 2017
  • Vanadium Dioxide has been investigated for use as a "spectrally-selective" window coating to block infrared transmission and reduce the loss of building interior heat through windows. The preparation of thermochromic $VO_2$ powder by the reductive reaction with hydrogen was studied. The reductive reaction method has many advantages of easy and mass production of $VO_2$ powder according to controlled reaction without semi-conductor equipments like sputter and beam evaporator. The reaction temperature, time, concentration of reductive gas, post-annealing condition and W addition as dopant would affect the characterization of $VO_2$ powder and its thermochromism. Many applications for electrical device and energy-saving technologies is expected.

Study on Crashworthiness of Icebreaker Steel: Part II Ship Side Structural Behavior Due to Impact Bending (쇄빙선의 내충격 특성에 관한 실험적 연구: 제2부 선체 구조의 충격 굽힘 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Han, Donghwa;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.277-286
    • /
    • 2016
  • The first part of this study found the tendencies of the mechanical properties of two arctic structural steels (EH32 and FH32). In the second part, the crashworthiness of stiffened panels scaled down from the side frame structure of a Korean research icebreaker was determined. A procedure for designing the shapes and sizes of the stiffened panels, mass and shape of a drop striker, and a large temperature chamber, and then manufacturing these, is introduced in detail. From impact bending tests for the stiffened panels, the residual permanent deformations and deformation histories over time were captured using manual measurement and video image analyses. Numerical simulations of the impact bending tests were carried out for three different finite element models, which were mainly composed of shell elements, solid elements, and solid elements, with welding beads. It was proven from a comparison of the test results and numerical simulation results that the solid element model with the welding bead consideration approached the test results in terms of the residual deformations as long as the strain rate effect was taken into account.

Effects of ground motion frequency content on performance of isolated bridges with SSI

  • Neethu, B;Das, Diptesh;Garia, Siddharth
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.353-363
    • /
    • 2017
  • The present study considers a multi-span continuous bridge, isolated by lead rubber bearing (LRB). Dynamic soilstructure interaction (SSI) is modelled with the help of a simplified, sway-rocking model for different types of soil. It is well understood from the literature that SSI influences the structural responses and the isolator performance. However, the abovementioned effect of SSI also depends on the earthquake ground motion properties. It is very important to understand how the interaction between soil and structure varies with the earthquake ground motion characteristics but, as far as the knowledge of the authors go, no study has been carried out to investigate this effect. Therefore, the objectives of the present study are to investigate the influence of earthquake ground motion characteristics on: (a) the responses of a multi span bridge (isolated and non-isolated), (b) the performance of the isolator and, most importantly, (c) the soil-structure interaction. Statistical analyses are conducted by considering 14 earthquakes which are selected in such a way that they can be categorized into three frequency content groups according to their peak ground acceleration to peak ground velocity (PGA/PGV) ratio. Lumped mass model of the bridge is developed and time history analyses are carried out by solving the governing equations of motion in the state space form. The performance of the isolator is studied by comparing the responses of the bridge with those of the corresponding uncontrolled bridge (i.e., non-isolated bridge). On studying the effect of earthquake motions, it is observed that the earthquake ground motion characteristics affect the interaction between soil and structure in such a way that the responses decrease with increase in frequency content of the earthquake for all the types of soil considered. The reverse phenomenon is observed in case of the isolator performance where the control efficiencies increase with frequency content of earthquake.

A Study on Flow Variation with Geometrical Characteristics of Fault Zones Using Three-dimensional Discrete Fracture Network (3차원 이산 균열망 모형을 이용한 단층지역의 기하학적 특성에 따른 흐름 변화에 관한 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.326-326
    • /
    • 2016
  • The fault can be defined, in a geological context, as a rupture plane showing a significant displacement generated in the case that the local tectonic stress exceeds a threshold of rupture along a particular plane in a rock mass. The hydrogeological properties of this fault can be varied with the spatial distribution and the connectivity of void spaces in a fault. When the formation of fault includes the process of the creation and the destruction of void spaces, a complex relation between the displacement along the fault and the variation of void spaces. In this study, the variation of flow with the geometrical characteristics of the fault is simulated and analyzed by using the three-dimensional discrete fracture network model. Three different geometrical characteristics of the faults are considered in this study: 1) simple hydraulic conductive plane, 2) damaged zone, and 3) relay structure of faults.

  • PDF

Modal and Structural Analysis of Laser Cutter (레이저 절단기의 모드해석과 구조해석)

  • Kyu-Nam Cho;Rae-Young Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 1994
  • A Laser Cutter is designed for the precise fabrications in the shipyards recently. The cutter is a gantry type one with specified functions of movability and strength in order to satisfy the workability. The gantry frame should move with a certain velocity in a relatively short time for the proper cutting of the object materials. The gantry is fitted with ball screw and the acceleration field is formed by actuating this ball screw. The relative displacement should be within the allowable design criteria to make sure the precise cutting of the materials by the laser. In this paper, modal and structural analysis for a Laser Cutter which is commonly used in the shipyards, is carried out to check the design criteria of the system. The system is modeled by placing the proper shell and soils finite elements and fictitious mass properties to represent the real one. The way how to extract the loading conditions based on the given velocity criteria of the system is presented. Static structural analysis is performed and the results came out as expected. Modal analysis for finding eigen-values and mode shapes of the system is performed and it is shown that the time dependent dynamic analysis is unnecessary for this system for its operating circumstances.

  • PDF

Characterization of gender-specific bovine serum

  • Kim, Ji-Hoe;Kim, Min-Soo;Nahm, Sang-Soep;Lee, Dong-Mok;Pokharel, Smritee;Choi, In-Ho
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • Animal cell cultures generally require a nutrient-rich medium supplemented with animal serum. Adult bovine serum contains a variety of nutrients including inorganic minerals, vitamins, salts, proteins and lipids as well as growth factors that promote animal cell growth. To evaluate the potential use of gender-specific bovine serum (GSBS) for cell culture, the biochemical properties of male serum (MS), female serum (FS) and castrated-male serum (CMS) were investigated. Overall, the chemical profile of GSBS was similar to that of bovine references except for glucose, creatine kinase, lactate dehydrogenase and potassium. FS showed elevated total protein and sodium concentrations compared to MS and CMS. Proteins present in MS, FS and CMS but absent in fetal bovine serum (FBS) were selected by two-dimensional gel electrophoresis and identified by peptide mass fingerprinting. Some of the identified proteins are known to be involved in immune responses and the others have unknown physiological roles. Moreover, it was found that some proteins such as alpha-2-macroglobulin appeared to be gender-specific with higher contents in FS. Insulin and testosterone was significantly higher in MS, and $17{\beta}$-estradiol and estrone were higher in FS, as compared to the other sera. Taken together, the results indicate that each GSBS has a different ratio of components. Differences in serum constituents may affect cell cultures in a different manner and could be beneficial, depending on the specific aim of cell cultures.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

A rock mass assessment procedure based on quantitative geophysical log analysis of coal measure sequences (탄층에 대한 정량적 물리검층에 기초한 암반 평가 과정)

  • Hatherly Peter;Medhurst Terry;Sliwa Renate;Turner Roland
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Geophysical logging is routinely undertaken as part of most coal mine exploration programs. Currently, the main application for the logs is to determine coal seam depth and to qualitatively estimate coal quality, lithology, and rock strength. However, further information can be obtained, if quantitative log interpretation is made. To assist in the uptake of quantitative interpretation, we discuss log responses in terms of the mineralogy of the clastic sedimentary rocks frequently found in the Australian black coal mining areas of the Sydney and Bowen Basins. We find that the log responses can be tied to the mineralogy with reasonable confidence. Ambiguities in the interpretation will be better resolved if a full suite of logs is run. A method for checking for internal consistency, by comparing calculated and observed velocities, is also described. A key driver for quantitative interpretation is geotechnical characterisation. We propose a classification system for clastic rocks that takes into consideration physical rock properties that can be inferred from geophysical logs.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Formation of compound layers and Wear behavior of AISI4115 steels by gaseous nitriding process (AISI4115 기계구조용 합금강의 질화 가스분위기에 따른 화합물층의 형성 및 내마모특성)

  • Kim, Taehwan;Son, Seokwon;Cho, Kyuntaek;Lee, Kee-ahn;Lee, Won-beom
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.267-277
    • /
    • 2021
  • Nitriding layers developed during gaseous nitriding of AISI4115 steels for the application of steel bushing part were investigated. The compound layer thickness of about 10㎛, 0.3mm of case depth under the same conditions, and conventional nitriding, nitrocarburizing, and controlled nitriding were performed in three methods. In the controlled nitriding, KN was controlled by measuring the hydrogen partial pressure. The nitrided samples were analyzed by micro Vickers hardness test, optical microscopy and scanning electron microscopy. The phases of compound layer were identified by X-ray diffraction and electron backscatter diffraction. The controlled nitriding specimen indicated the highest surface hardness of about 860 HV0.1. The compound layer of the conventional nitriding and nitrocarburizing specimen was formed with about 46% porous layer and 𝜺 + 𝜸' phase, and about 13% porous layer and about 80% 𝜸' phase were formed on the controlled nitriding specimen. As a result of the Ball-on-disk wear test, the worn mass loss of ball performed on the surface of the controlled nitriding specimen was the largest. The controlled nitriding specimen had the highest surface hardness due to the lowest porous percentage of compound layer, which improved the wear resistance.