• Title/Summary/Keyword: Mass Production Phase

Search Result 170, Processing Time 0.021 seconds

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

The Effects of Different Crude Protein Levels in Same Methionine and Lysine Diet on the Performance of Laying Hens (동일한 Methionine과 Lysine수준의 사료에서 단백질수준이 산란계의 생산성에 미치는 영향)

  • 이상진;김삼수;정선부;곽종형;이규호;강태항
    • Korean Journal of Poultry Science
    • /
    • v.18 no.2
    • /
    • pp.67-84
    • /
    • 1991
  • The purpose of this study was to investigate the effects of dietary protein levels on laying hen performance. The level of methionine and lysine were 0.32% and 0.64%, respectively and the levels of protein were 12%, 13%, 14% or 15%. Total 384 laying pullets of 22weeks age were reared from January 28, 1989 to March 23, 1990 for 60 weeks. The results obtained were summarized as follows : 1 Egg productions was highest at 15% of protein in phase I, 14% in phase II, and 13% in phase III, and there was significantly different egg Production among treatments during phase I and phase II (P<0.05). 2. Egg weight was heaviest in 14% of protein treatment in three phases and they showed significantly different egg weight among different levels of protein in phase I (P<0.01), phase II and III (P<0.05) , but there was not significantly different between 14% and 15% of protein. 3. Daily egg mass tends to increase followed by increasing of protein level and showed signifiant differences among treatments in phase I and phase II (P<0.01). 4. The 14% of protein treatment showed the highest daily feed intake and it showed significant difference in phase I and phase II (P<0.01) , but there was no significant difference between 14% and 15% of protein. 5. Feed efficiency was improved significantly followed by increasing of protein level in phase I (P<0.01) and phase II (P<0.05), but there was no significant difference among treatments in phase III. 6. Viability tends to increase as increasing of protein level, but there was no significant difference among treatments. 7. Utilizabilities of dry matter, crude protein and ether extract of experimental diets were not different among treatments, but the utilizability of carbohydrate tends to increase as increasing of protein level (P<0.05). 8. Eviscerated yield and abdominal fat accumulation was not difference among treatments. 9. Egg shell quality and chemical composition of egg content were not different among treatments. 10. The feed cost per kg egg mass showed the cheapest in 13% of protein treatment in all phase, but there were no significant differences among treatments.

  • PDF

Expression of Antihypertensive Peptide, His-His-Leu, as Tandem Repeats in Escherichia coli

  • Jeong, Do-Won;Shin, Dong-Seok;Ahn, Chang-Won;Song, In-Sang;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.952-959
    • /
    • 2007
  • His-His-Leu (HHL), a tripeptide derived from a Korean soybean paste, is an angiotensin-I-converting enzyme (ACE) inhibitor. We report here a method of producing this tripeptide efficiently by expressing tandem multimers of the codons encoding the peptide in E. coli and purifying the HHL after hydrolysis of the peptide multimers. The HHL gene, tandemly multimerized to a 40-mer, was ligated with ubiquitin as a fusion gene (UH40). UH40 was inserted into vector pET29b; the UH40 fusion protein was then produced in E. coli BL21. The recombinant UH40 protein was purified by cation-exchange chromatography with a yield of 17.3mg/l and analyzed by matrixassisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and protein N-terminal sequencing. Leucine aminopeptidase was used to cleave a 405-Da HHL monomer from the UH40 fusion protein and the peptide was purified using reverse-phase high-performance liquid chromatography (HPLC) on a C18 HPLC column, with a final yield of 6.2mg/l. The resulting peptide was confirmed to be HHL with the aid of MALDI-TOF mass spectrometry, glutamine-TOF mass spectrometry, N-terminal sequencing, and measurement of ACE inhibiting activity. These results suggest that our production method is useful for obtaining a large quantity of recombinant HHL for functional antihypertensive peptide studies.

Purification and Characterization of Phocaecin PI80: An Anti-Listerial Bacteriocin Produced by Streptococcus phocae PI80 Isolated from the Gut of Peneaus indicus (Indian White Shrimp)

  • Satish Kumar, Ramraj;Arul, Venkatesan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1393-1400
    • /
    • 2009
  • A bacteriocin-producing strain PI80 was isolated from the gut of Penaeus indicus (Indian white shrimp) and identified as Streptococcus phocae PI80. The bacteriocin was purified from a culture supernatant to homogeneity as confirmed by Tricine SDS-PAGE. Reverse-phase HPLC analysis revealed a single active fraction eluted at 12.94 min, and MALDI-TOF mass spectrometry analysis showed the molecular mass to be 9.244 kDa. This molecular mass does not correspond to previously described streptococcal bacteriocins. The purified bacteriocin was named phocaecin PI80 from its producer strain, as this is the first report of bacteriocin production by Streptococcus phocae. The bacteriocin exhibited a broad spectrum of activity and inhibited important pathogens: Listeria monocytogenes, Vibrio parahaemolyticus, and V. fischeri. The antibacterial substance was also sensitive to proteolytic enzymes: trypsin, protease, pepsin, and chymotrypsin, yet insensitive to catalase, peroxidase, and diastase, confirming that the inhibition was due to a proteinaceous molecule (i.e., the bacteriocin), and not due to hydrogen peroxide or diacetyl. Phocaecin PI80 moderately tolerated heat treatment (up to $70^{\circ}C$ for 10 min) and resisted certain solvents (acetone, ethanol, and butanol). A massive leakage of $K^+$ ions from E. coli $DH5\alpha$, L. monocytogenes, and V. parahaemolyticus was induced by phocaecin PI80, as measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). Therefore, the results of this study show that phocaecin PI80 may be a useful tool for inhibiting L. monocytogenes in seafood products that do not usually undergo adequate heat treatment, whereas the cells of Streptococcus phocae PI80 could be used to control vibriosis in shrimp farming.

Stable lateral-shearing interferometer for in-line inspection of aspheric pick-up lenses (생산 라인에서의 광 Pick-up용 비구면 대물 렌즈 측정을 위한 안정된 층밀리기 간섭계)

  • 조우종;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.189-193
    • /
    • 1997
  • Aspheric pick-up lenses are increasingly used in consumer products such as computer and multimedia, as their mass production has become possible owing to the injection molding process. However still much work needs to be done for more effective manufacture of aspheric lenses, one area of which is the in-line inspection of produced lenses. In this paper, we present a lateral-shearing interferometer that has specially been designed to have a high immunity to external vibration and atmospheric disturbance. The interferometer comprises four prisms. They are directly attached to each other using an immersion oil so that relative sliding motions between the prisms are allowed. Their relative displacement can readily generate necessary lateral-shearing and phase-shifting to determine the wavefront of the beam collimated by the lens under inspection. A special phase-measuring algorithm of arbitrary-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil. Zernike polynomial fitting has done for determinating quantitative aberration of aspheric pick-up lenses. The interferometer built in this work is robust to external mechanical vibration and atmospheric disturbance so that experimental results show that it has a repeatability of less than λ/100.

  • PDF

High-level Production of Recombinant Human IFN-$\alpha2a$ with Co-expression of $tRNA^{Arg(AFF/AGA)}$ in High-cell-density Cultures of Escherichia coli

  • Shin, Chul-Soo;Hong, Min-Seon;Shin, Hang-Chel;Lee, Jeewon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.301-305
    • /
    • 2001
  • The co-expression of the arg U gene in a double-vector expression system of recombi-nant Escherichia coli BL22(DE3)[pET-IEN2a+pAC-argU] significantly enhanced the production level of reconminant human interferon -$\alpha$2a(rhIFN-$\alpha$2a) in high cell density cultures, compared to a recombinant E. coli culture containing only the single expression vector, pET-IEN2a. The dry cell mass concentration increased to almost 100 g/L, and more than 4 g/L of rhIFN-$\alpha$2a was accumu-lated in the culture broth. Evidently, the synthesis of rhIFN-$\alpha$2a was strongly dependent on the pre-induction growtih rate and more efficient at a higher specific growth rate. The additional sup-ply of tRN $A^{Arg(AGG/AGA)}$ enhanced the expression level of the rhIFN-$\alpha$2a gene in the early stage of the post-induction phase, yet thereafter the specific production rate of rhIFN-$\alpha$2a rapidly de-creased due to severe segregational instability of plasmid vector pET-IEN2a. It would appear that the plasmid instability with only occurred to pET-IEN2a in the double vector system, was re-lated to the effect of translational stress due to the over expression of rhIFN-$\alpha$2a.

  • PDF

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.

Ammonia Gas Removal by Bacillus subtilis IB101 and Dctimization of Culture Media (Bacillus subtilis IB101을 이용한 암모니아 가스 제거 및 생산배지 최적화)

  • Kim, So-Young;Noh, Yong-Ho;Kang, Sung-Gak;Kim, Young-Bum;Jang, Woo-Jin;Kim, Dong-Joon;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.162-167
    • /
    • 2007
  • Ammonia gas is one of the major pollutants which cause environmental pollution and damage to the human and the livestock. The objective of this study was to investigate the important parameters for the development of efficient removal of ammonia gas by Bacillius subtilis IB101 and to optimize the medium composition for the mass production of B. subtilis IB101. The ammonia gas removal efficiency was evaluated at different growth phases and by changing culture conditions (temperature, pH). The effect of $(NH_4)_2SO_4$ concentration in preculture medium was examined. Medium optimization for the mass production of B. subtilis IB101 was performed by using Plackett-Burman design and one factor at a time method. The removal of ammonia gas was more efficient at exponential phase by 20% than at stationary phase. The ammonia gas removal was the highest at pH 4 and 30 $^{\circ}C$. There was not any significant influence of concentration of $(NH_4)_2SO_4$ on the removal of ammonia gas. The components of optimized medium for the production of viable Bacillus subtilis IB101 was yeast extract 10 g/l, soluble starch 2.5 g/l, $MgSO_4$ 6 g/l, $CaCl_2$ 1.55 g/l, $(NH_4)_2SO_4$ 5 g/l, $KH_2PO_4$ 0.75 g/l, soy bean meal 8 g/l.

Production and Process Monitoring of 5-Aminolevulinic Acid (ALA) by Recombinant E. coli I. Characteristics of ALA Production (유전자 재조합 대장균에 의한 5-Aminolevulinic Acid (ALA)의 생산 및 공정 모니터링 I. ALA의 생산 특성)

  • 이종일;정상윤;서국화;한경아;조성효;백경환
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2004
  • In this study the extracellular production of 5-aminolevulinic aicd (ALA) by recombinant E. coli BL2l (DE3) pLysS harboring the plasmid pFLS45 are investigated. Optimum concentrations of succinic acid and glycine for cell growth and ALA production were found to be 30 mM and 15 mM, respectively. Levulinic acid (LA) as an inhibitor of ALAD was added to the culture medium in the end of exponential cell growth phase and its optimum concentration was 30 mM. Growth of recombinant E. coli BL2l (DE3) pLysS (pFLS45) was largely dependent upon the pH value of culture medium. When the pH of culture medium was in the range of 6.0 and 6.5, high cell mass and ALA production were obtained. IPTG induction for the expression of the fusion gene did not enhance the production of ALA. Recombinant cell grew at 30't faster than at 37$^{\circ}C$, but ALA productivity was lower than at 37$^{\circ}C$. Repeated addition of glycine, succinic acid, and LA increased the production of ALA and the inhibition of intracellular ALA dehydratase activity, with up to 1.3 g/L ALA having been produced in the cultivation.