• Title/Summary/Keyword: Mass Matrix

Search Result 1,032, Processing Time 0.025 seconds

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

Sensitive Determination of Pinaverium Bromide in Human Plasma by LC-ESI-MS/MS : Applicability to Oral Bioavailability Determination (LC-ESI-MS/MS를 이용한 생체시료 중 브롬화피나베리움의 고감도 분석 및 이를 이용한 생체이용률 평가)

  • Park, Seok;Lee, Ye-Rie;Kim, Ho-Hyun;Lee, Hee-Joo;Kim, Yoon-Gyoon;Youm, Jeong-Rok;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • A sensitive method for quantification of pinaverium bromide in human plasma was established using liquid chromatography-electrospray ionization tandem mass spectrometry(LC-ESI-MS/MS). Glimepiride was used as internal standard. Pinaverium bromide and internal standard in plasma sample were extracted using tert-butylmethylether(TBME). A centrifuged upper layer was then evaporated and reconstituted with mobile phase of acetonitrile-5 mM ammonium formate (80/20, pH 3.0). The reconstituted samples were injected into a $C_{18}$ reversed-phase column. Using MS/MS with multiple reaction monitoring (MRM) mode, pinaverium and glimepirde were detected without severe interference from human plasma matrix. Pinaverium produced a protonated precursor ion $([M+H]^+)$ at m/z 510.3 and a corresponding product ion at m/z 228.9. Internal standard produced a protonated precursor ion $([M+H]^+)$ at m/z 491.5 and a corresponding product ion at m/z 352.0. Detection of pinaverium bromide in human plasma was accurate and precise, with limit of quantitation at 0.5 ng/ml. The method has been successfully applied to bioavailability study of pinaverium bromide tablet in Korean healthy male volunteers. Pharmacokinetic parameters such as $AUC_t,\;C_{max},\;T_{max},\;K_{el}\;and\;t_{1/2}$ were calculated.

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.

Application of On-Line SPE-LC/MSD to Measure Perfluorinated Compounds (PFCs) in Water (On-Line SPE-LC/MSD 시스템을 이용한 수중의 과불화 화합물(PFCs) 분석)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jung, Jong-Moon;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • We applied a sensitive method based on on-line solid-phase extraction (SPE) and liquid chromatography/mass spectrometry (LC/MSD) using an electrospray interface for the determination of eleven perfluorinated compounds (PFCs) in water. The on-line connection suppressed the target loss by keeping the cartridge from drying, which resulted in improvement of the recovery and saving of the analytical time. For the on-line solid-phase extraction of 10 mL water samples, recoveries were between $80.4{\pm}5.2%{\sim}109.5{\pm}1.4%$ and limit of quantification (LOQ) were 3.6~15.9 ng/L for the PFCs. The total PFCs concentrations of the tributaries and main stream of Nakdong River water samples were in the range of $8.0{\sim}678.6{\mu}g/L$.

Determination of streptomycin in kiwifruit samples using LC-ESI-MS/MS (LC-ESI-MS/MS를 이용한 키위 중 streptomycin 분석)

  • Do, Jung-Ah;Lee, Mi-Young;Cho, Yoon-Jae;Chang, Moon-Ik;Hong, Jin-Hwan;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.299-307
    • /
    • 2015
  • In May 2012, a safety hazard issue arose because some kiwifruit growers in New Zealand had sprayed streptomycin to prevent kiwifruit canker. Therefore, for food safety management, analytical methods to determine streptomycin residues in kiwifruits are required. We developed an analytical method to determine streptomycin residues in kiwifruit samples using liquid chromatograph tandem mass spectrometer (LC-ESI-MS/MS). Streptomycin residues in samples were extracted using 1% formic acid in methanol, centrifugation for 10 min, and subsequent supernatant filtration. Purified samples were subjected to LC-ESI-MS/MS to confirm presence of and quantify streptomycin residues. Average streptomycin recoveries (6 replicates each sample) were in the range of 94.8%-110.6% with relative standard deviations of <10%. The linearity of the concentration range of 0.01-5.0 mg/kg using a matrix-matched calibration gave R2 = 0.9995. The limit of quantification (LOQ) was 0.01 mg/kg. Results showed that our analytical method is rapid, simple, and sensitive, with easy sample preparation.

Analysis of factors that affect drainage volume after expander-based breast reconstruction

  • Lim, Yoon Min;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.47 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Background Closed-suction drains are widely used in expander-based breast reconstruction. These drains are typically removed using a volume-based criterion. The drainage volume affects the hospital stay length and the recovery time. However, few studies have analyzed the factors that influence drainage volume after expander-based breast reconstruction. Methods We retrospectively analyzed data regarding daily drainage from patients who underwent expander-based breast reconstruction between April 2014 and January 2018 (159 patients, 176 expanders). Patient and operative factors were analyzed regarding their influence on total drainage volume and drain placement duration using univariate and multivariate analyses and analysis of variance. Results The mean total drainage volume was 1,210.77±611.44 mL. Univariate analysis showed correlations between total drainage volume and age (B=19.825, P<0.001), body weight (B=17.758, P<0.001), body mass index (B=51.817, P<0.001), and specimen weight (B=1.590, P<0.001). Diabetes history (P<0.001), expander type (P<0.001), and the surgical instrument used (P<0.001) also strongly influenced total drainage. The acellular dermal matrix type used did not affect total drainage (P=0.626). In the multivariate analysis, age (B=11.907, P=0.004), specimen weight (B=0.927, P<0.001), and expander type (B=593.728, P<0.001) were significant predictors of total drainage. Conclusions Our findings suggest that the total drainage and the duration of drain placement needed after expander-based breast reconstruction can be predicted using preoperative and intraoperative data. Patient age, specimen weight, and expander type are important predictors of drainage volume. Older patients, heavier specimens, and use of the Mentor rather than the Allergan expander corresponded to a greater total drainage volume and a longer duration of drain placement.

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

In vitro Degradation of β-TCP/PLGA Composites Prepared with Microwave Energy in Simulated Body Fluid (마이크로파에 의해 합성된 β-TCP/PLGA 복합체의 의사체액에서의 분해 거동)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Hyun, Yong-Taek;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.676-680
    • /
    • 2006
  • The biodegradable $\beta$-tricalcium phosphate ($\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The degradation behavior of $\beta$-TCP/PLGA composite was investigated by soaking in simulated body fluid (SBF) for 4 weeks. The molecular weight of the $\beta$-TCP/PLGA composites decreased with soaking time until week 2, whereas the loss rate of molecular weight reduced after week 2. The incubation time was needed for the degradation of the $\beta$-TCP, indicating that the $\beta$-TCP should be detached from the PLGA matrix and then degraded into SBF solution. The studies of mass loss of the composites with the soaking time revealed that the degradation behavior of PLGA would be processed with the transformation from the polymer to the oligomer followed by the degradation. Morphological changes, whisker-like, due to transformation and degradation of polymer in the composites were observed after week 2. On the basis of the results, it found that the degradation behavior of $\beta$-TCP/PLGA composites was influenced by the $\beta$-TCP content in the composites and the degradation rate of the composites could be controlled by the initial molecular weight of PLGA in the composites.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Structural Characterization of Physiologically Active Polysaccharides from Natural Products (Arabidopsis)

  • Shin, Kwang-Soon;Darvill, Alan G.
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.447-452
    • /
    • 2006
  • To determine the functions of specific cell wall polysaccharides, polysaccharides of three mutants, mur3-1, mur3-2, and mur3-3, obtained from Arabidopsis wild type, underwent structural characterization. Upon sequential separation of pectins (RG-I and RG-II) and cross-linking glycans (xyloglucan, XG), only XG was affected by the mud mutation. Wild-type XG contained a considerable amount of fucose, whereas the fucose level in mur3 XGs was less than 20% that of wild type. Further analysis of XGs by matrix-assisted laser-induced/ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that mud lines considerably or completely lost the fucosylated XG oligosaccharides such as XXFG and XLFG and the double-galactosylated oligosaccharide XLLG $^1H$-NMR spectroscopic analyses of the XG oligosaccharides from mur3-3 plant revealed the absence of fucose and a galactose level in the galactosylated side chain that was reduced by 40% compared to that of Arabidopsis wild-type plant. In contrast, 85% less fucose and a slight loss of galactose were observed in the mur3-1 and mur3-2 lines which show normal growth habit. Of the three Arabidopsis mur3 lines studied here, mur3-3 is disrupted by a T-DNA insertion in the exon of MUR3 which encodes XG-specific galactosyltransferase, and exhibits slight dwarfism. These results indicated that the T-DNA insertion at the MUR3 locus did not induce the complete loss of galactose in XG, and that galactose, rather than fucose, in the XG side chains made a major contribution to overall wall strength.