• Title/Summary/Keyword: Mass Matrix

Search Result 1,028, Processing Time 0.024 seconds

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane (해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul;Ham, Seung-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method (유한요소법을 이용한 평판의 동특성 연구)

  • 태순호;이태연;허문회
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

Mesocarbon microbead densified matrix graphite A3-3 for fuel elements in molten salt reactors

  • Wang, Haoran;Xu, Liujun;Zhong, Yajuan;Li, Xiaoyun;Tang, Hui;Zhang, Feng;Yang, Xu;Lin, Jun;Zhu, Zhiyong;You, Yan;Lu, Junqiang;Zhu, Libing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1569-1579
    • /
    • 2021
  • This study aims to provide microstructural characterization for the matrix graphite which molten salt reactors (MSRs) use, and improve resistance to molten salt infiltration of the matrix graphite for fuel elements. Mesocarbon microbeads (MCMB) densified matrix graphite A3-3 (MDG) was prepared by a quasi-isostatic pressure process. After densification by MCMBs with average particle sizes of 2, 10, and 16 ㎛, the pore diameter of A3-3 decreased from 924 nm to 484 nm, 532 nm, and 778 nm, respectively. Through scanning electron microscopy, the cross-section energy spectrum and time-of-flight secondary ion mass spectrometry, resistance levels of the matrix graphite to molten salt infiltration were analyzed. The results demonstrate that adding a certain proportion of MCMB powders can improve the anti-infiltration ability of A3-3. Meanwhile, the closer the particle size of MCMB is to the pore diameter of A3-3, the smaller the average pore diameter of MDG and the greater the densification. As a matrix graphite of fuel elements in MSR was involved, the thermal and mechanical properties of matrix graphite MDG were also studied. When densified by the MCMB matrix graphite, MDGs can meet the molten salt anti-infiltration requirements for MSR operation.

Dynamic characteristics and control of submerged working robot manipulator (수중작업 로봇의 동특성 및 제어에 관한 연구)

  • 강이석;송정섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.488-496
    • /
    • 1991
  • Dynamic chanracterisitcs and control of a submerged working robot manipulator have been investigated for articulated type robot manipulator with three revoluted joints. A dynamic equation of the manipulator has been derived. The dynamic equation includes not only mass matrix, centrifugal and Coriolis terms and gravity terms but also added mass, buoyant force and drag force terms, which are important terms for underwater motion description. A series of simulations using computed torque method have been performed for the cases of straight and circular trajectory motion controls. The results of this study show that the dynamic characteristics of the submerged working robot manipulator are very different from that of the manipulator which works in air. The influences of added mass, buoyant force and drag force terms to the total required torques have been discussed as distribution ratios to the total required torques.

Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System (탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Application of Contradiction Analysis for Determination of Product Platform in Mass Customization and Case Study (모순분석을 이용한 대량맞춤에서의 제품 플랫폼 결정 및 적용사례)

  • Kim, Kyoung Hee;Park, Joon Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Mass customization meets various needs of customers as well as produces various products and service in low cost like mass production. However, low cost and product diversity have conflicting concepts. Therefore, in order to solve this problem, we need standardization methods. In this paper, we suggest a method for determining the product platform which is a set of common parts in a product family. To achieve the method, we used the Contradiction Analysis of TRIZ (Theory of Inventive Problem Solving), Using this approach, we found a model that obtains various products within limited resources and conditions. Also, we suggest another method that increases the flexibility of our method by Design Structure Matrix.

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF