• Title/Summary/Keyword: Mask modeling

Search Result 42, Processing Time 0.026 seconds

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Vibration Analysis of shadowmask using measured acceleration at stud pin

  • Kim, Dong-Hwan;Kim, Jong-Heon;Oh, Hyung-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1151-1152
    • /
    • 2003
  • Harmonic analysis, based on finite element method, is popularly used to predict a response of shadow mask to the external excitation from speakers. Since vibration wave travels from speakers to the shadow mask, a finite element model must include all mechanical parts between the speakers and the shadow mask, which increases total time needed in finite element modeling and computation. In this paper, we perform the harmonic analysis on a MF assembly to obtain frequency response function of a shadow mask, and compare the solutions with experimental results.

  • PDF

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

Wear Evaluation of Protective Mask according to Internal Volume (보호마스크의 내부 부피에 따른 착용 평가)

  • Eom, Ran-i;Park, Sunhee;Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.4
    • /
    • pp.626-638
    • /
    • 2020
  • In this study, protective masks were designed in varying internal volume and analyzed in regards to wearing effect. Masks were measured by surface temperature and subjective wear evaluation. Four experimental masks were created with an increasing distance between the mask center line and nose in increments. The distances were set at 0.0 cm (M0), 2.0 cm (M2), 4.0 cm (M4), and 6.0 cm (M6). The area and volume of each experimental mask was measured and both measurements had a positive correlation with the set distances. Among the experimental masks, M2 was the most breathable. The heat between the face and the mask created by exhalation was able to escape from the mask and provided the highest comfort sensation when worn. Conversely, an internal volume that is too large would decrease its comfort because repetitive breathing deforms the appearance of the mask and adversely affects its fit. Therefore, creating and maintaining the optimal internal volume of the M2 mask is important to achieve maximum thermal sensation and ease of wear.

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.

Consumer awareness about mask repurchase intention during coronavirus: The case of Chinese sample

  • Cui, Yu Hua
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.93-104
    • /
    • 2021
  • The worldwide coronavirus pandemic has brought to light the importance of having a reliable supply of masks for each person. This study aims to understand the effect of personal awareness (including community, others', and safety awareness) on consumption conformity and the repurchase intention of masks. The research method used the SPSS 22.0 and AMOS 22.0 statistical systems to analyze descriptive statistics in terms of reliability, validity, structural equation modeling, and moderated regression analysis. A total of 272 Chinese participants were recruited via an online survey website (www.sojump.com) from May 1 to May 14, 2020. Findings indicated that mask users' awareness can be categorized into three distinct types: community, others', and safety awareness. The more community and safety awareness is perceived, the higher the level of consumption conformity. In contrast, others' has no statistical effect on consumption conformity or repurchase intention. The positive influence of consumption conformity on the repurchase intention of masks is also weaker than price perception. However, another moderating variable, mask quality, has no moderating effect. The results of this study can help mask manufacturers and distributors retain their customers, resulting in reasonable protective measures while maintaining market order. Theoretical and managerial implications for mask suppliers are also provided.

Modeling and Simulation of Line Edge Roughness for EUV Resists

  • Kim, Sang-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • With the extreme ultraviolet (EUV) lithography, the performance limit of chemically amplified resists has recently been extended to 16- and 11-nm nodes. However, the line edge roughness (LER) and the line width roughness (LWR) are not reduced automatically with this performance extension. In this paper, to investigate the impacts of the EUVL mask and the EUVL exposure process on LER, EUVL is modeled using multilayer-thin-film theory for the mask structure and the Monte Carlo (MC) method for the exposure process. Simulation results demonstrate how LERs of the mask transfer to the resist and the exposure process develops the resist LERs.

Mass Media and Social Media Agenda Analysis Using Text Mining : focused on '5-day Rotation Mask Distribution System' (텍스트 마이닝을 활용한 매스 미디어와 소셜 미디어 의제 분석 : '마스크 5부제'를 중심으로)

  • Lee, Sae-Mi;Ryu, Seung-Eui;Ahn, Soonjae
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.460-469
    • /
    • 2020
  • This study analyzes online news articles and cafe articles on the '5-day Rotation Mask Distribution System', which is emerging as a recent issue due to the COVID-19 incident, to identify the mass media and social media agendas containing media and public reactions. This study figured out the difference between mass media and social media. For analysis, we collected 2,096 full text articles from Naver and 1,840 posts from Naver Cafe, and conducted word frequency analysis, word cloud, and LDA topic modeling analysis through data preprocessing and refinement. As a result of analysis, social media showed real-life topics such as 'family members' purchase', 'the postponement of school opening', ' mask usage', and 'mask purchase', reflecting the characteristics of personal media. Social media was found to play a role of exchanging personal opinions, emotions, and information rather than delivering information. With the application of the research method applied to this study, social issues can be publicized through various media analysis and used as a reference in the process of establishing a policy agenda that evolves into a government agenda.