• Title/Summary/Keyword: Mask Based Technique

Search Result 78, Processing Time 0.034 seconds

Design of Unsharp Mask Filter based on Retinex Theory for Image Enhancement

  • Kim, Ju-young;Kim, Jin-heon
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • This paper proposes a method to improve the image quality by designing Unsharp Mask Filter (UMF) based on Retinex theory which controls the frequency pass characteristics adaptively. Conventional unsharp masking technique uses blurring image to emphasize sharpness of image. Unsharp Masking(UM) adjusts the original image and sigma to obtain a high frequency component to be emphasized by the difference between the blurred image and the high frequency component to the original image, thereby improving the contrast ratio of the image. In this paper, we design a Unsharp Mask Filter(UMF) that can process the contrast ratio improvement method of Unsharp Masking(UM) technique with one filtering. We adaptively process the contrast ratio improvement using Unsharp Mask Filter(UMF). We propose a method based on Retinex theory for adaptive processing. For adaptive filtering, we control the weights of Unsharp Mask Filter(UMF) based on the human visual system and output more effective results.

Development of Rapid Mask Fabrication Technology for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 쾌속 마스크 제작기술의 개발)

  • Lee, Seung-Pyo;Ko, Tae-Jo;Kang, Hyun-Wook;Cho, Dong-Woo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • Micro-machining of a brittle material such as glass, silicon, etc., is important in micro fabrication. Particularly, micro-abrasive jet machining (${\mu}-AJM$) has become a useful technique for micro-machining of such materials. The ${\mu}-AJM$ process is mainly based on the erosion of a mask which protects brittle substrate against high velocity of micro-particle. Therefore, fabrication of an adequate mask is very important. Generally, for the fabrication of a mask in the ${\mu}-AJM$ process, a photomask based on the semi-conductor fabrication process was used. In this research a rapid mask fabrication technology has been developed for the ${\mu}-AJM$. By scanning the focused UV laser beam, a micro-mask pattern was fabricated directly without photolithography process and photomask. Two kinds of mask patterns were fabricated using SU-8 and photopolymer (Watershed 11110). Using fabricated mask patterns, abrasive-jet machining of Si wafer were conducted successfully.

Image Registration for High-Quality Vessel Visualization in Angiography (혈관조영영상에서 고화질 혈관가시화를 위한 영상정합)

  • Hong, Helen;Lee, Ho;Shin, Yeong-Gil
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Fabrication of Miniaturized Shadow-mask for Local Deposition (국부증착용 마이크로 샤도우 마스크 제작)

  • 김규만;유르겐부르거
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.152-156
    • /
    • 2004
  • A new tool of surface patterning technique for general purpose lithography was developed based on shadow mask method. This paper describes the fabrication of a new type of miniaturized shadow mask. The shadow mask is fabricated by photolithography and etching of 100-mm full wafer. The fabricated shadow mask has over 388 membranes with apertures of micrometer length scale ranging from 1${\mu}{\textrm}{m}$ to 100s ${\mu}{\textrm}{m}$ made on each 2mm${\times}$2mm large low stress silicon nitride membrane. It allows micro scale patterns to be directly deposited on substrate surface through apertures of the membrane. This shadow mask method has much wider choice of deposit materials, and can be applied to wider class of surfaces including chemical functional layer, MEMS/NEMS surfaces, and biosensors.

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm (개선된 다중 구간 샘플링 배경제거 알고리즘)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Customized Eyelid Warming Control Technique Using EEG Data in a Warming Mask for Sleep Induction (수면유도용 온열안대를 위한 뇌파기반의 맞춤형 온열제어 기법)

  • Han, Hyegyeong;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1149-1160
    • /
    • 2021
  • Lack of sleep time increases risks of fatigue, hypomnesis, decreased emotional stability, indigestion, and dementia. The risks can be reduced by providing eyelid-warming, inducing sleep and improving sleep quality. However, effective warming temperature to an person varies depending on physical condition and the individual. The various types of frequencies can be identified in brain wave from a person and amount of frequencies is also changed continuously before and after sleep. Therefore we can identify the user's sleep stage with brain wave, namely EEG. Effective sleep induction is possible if warming temperature to a person is controlled based on EEG. In this paper, we propose customized warming control techniques based on EEG for a efficient and effective sleep induction. As an experiment, sleep induction effects of standard sleep mask and customized temperature control techniques sleep mask are compared. EEG data and warming temperature were measured in 100 experiments. At customized warming control techniques, experiments showed that the ratio of alpha and theta waves increased by 3.21%p and the time to sleep decreased by 85 seconds. It will contribute to effective sleep induction and performance verification methods in customized sleep mask systems.

Extraction of Worker Behavior at Manufacturing Site using Mask R-CNN and Dense-Net (Mask R-CNN과 Dense-Net을 이용한 제조 현장에서의 작업자 행동 추출)

  • Rijayanti, Rita;Hwang, Mintae;Jin, Kyohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.150-153
    • /
    • 2022
  • This paper reports a technique that automatically extracts object shapes through Dense-Net, and subsequently, detects the objects using Mask R-CNN in a manufacturing site, in which workers and objects are mixed. It is based on the customized factory dataset by targeting workers, machines, tools, control boxes, and products as the objects. Mask R-CNN supports multi-object recognition as a well-known object recognition method, while Dense-Net effectively extracts a feature from multiple and overlapping objects. After immediate implementation using the two technologies, the object is naturally extracted from a still image of the manufacturing site to describe image. Afterwards, the result is planned to be used to detect workers' abnormal behavior by adding a label on the objects.

  • PDF