• Title/Summary/Keyword: Masan bay

Search Result 236, Processing Time 0.029 seconds

Heavy Metals in the Sea off Jinhae and Masan During Winter Period (동계 진해 마산해역의 중금속)

  • Kwak, Hi-Sang;Lee, Jong Wha
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.7-16
    • /
    • 1975
  • A survey was conducted to determine the concentrations of six heavy metals, namely Fe, Cu, Zn, Pb, Hg and Cd, in the sea water off Jinhae and Masan during January and February, 1974. The contents of Fe, Cu and Zn were the highest in Masan Bay, and decreased in order of Haengam Bay, Ungcheon area and Ungdong area. The Fe concentrations showed significant differences particulary in Masan Bay by depth. All of these characteristic would contribute to the assumption that the pollution might have originated from Masan. Pb contents varied in the range of 1.0-7.0 $\mu\textrm{g}$/l, but Haengam water contained the lowest concentrations of all areas surveyed. The contents of Hg and Cd showed 0.1 $\mu\textrm{g}$/l through survey regions respectively.

  • PDF

The Prediction of Red Tides in Jinhae Bay using a Discriminant Function (판별함수에 의한 진해만 적조예측)

  • 이문옥;백상호
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.8-19
    • /
    • 1998
  • The dicriminant function was introduced to understand the cause and establish the prediction method of red tides occurring In Jinhae Bay. Korea. Two sea re91ons of Masan and Haengam Bays and Dang- dong and Wonmun Bays had different types of causes and patterns for red tides. In Masan and Haengam Bays, the red tides concentrically occurred during June and September. For example, in .lune the red tides occurred from physical and meteorological factors, which are related to the stratification and the increase in planktons. However in August the red tides occurred from the water quality environment, based on these conditoins. Futhermore, in September the red tides were caused by the balance between the meteorological and water quality environmental factors. In contrast to those, In Dangdong and Won-mun Bays, the red tides mainly occurred during July and October and the frequency of occurrence was not as much as Masan and Haengam Bays. Especially, in August and September most meteorological and physical factors or water quality environmental factors appeared to contribute to the occurrence of red tides. This indicates that red tides do not easily occur as they are controlled by various environmental factors particularly in these regions The discriminant functions were applied to predict red tides which they were actually occurred In Masan and Haengam Bays in June. The results showed that they were successful for the prediction of red tide at Haengam Bay but not at Masan Bay. The reason for their discrepancy in Masan Bay could have come from using a slight higher value of pH or COD in May, instead of its value in June.

  • PDF

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

Estimation of PAHs Fluxes via Atmospheric Deposition and Riverine Discharge into the Masan Bay, Korea

  • Lee Su-Jeong;Moon Hyo-Bang;Choi Minkyu;Goo Jun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • Atmospheric deposition and riverine waters were sampled throughout a year, to estimate the loading fluxes of polycyclic aromatic hydrocarbons (PAHs) into the Masan Bay and its vicinity, Korea. Atmospheric deposition fluxes of total PAHs in the surveyed area varied from 62.2 to 464 ${\mu}g/m^2/year$. Concentration of total PAHs in water samples from six rivers ranged from 34.6 to 239 ng/L. Contribution of the carcinogenic PAHs to the total PAHs occupied $38\%$ and $50\%$ for atmospheric deposition and river waters, respectively. Atmospheric deposition fluxes and water concentrations of PAHs were slightly low or moderate to those in locations from some countries. Correspondence analysis was used to investigate the loading characteristics of PAHs according to transport routes. Atmospheric deposition samples were corresponded to higher molecular aromatics of PAHs, while riverine water samples were associated with lower molecular weight of PAHs. The results indicate that the higher-molecular-weight PAHs can be primarily transported by atmosphere deposition and the lower-molecular-weight PAHs can be mainly contaminated by riverine discharge into the Masan Bay and its vicinity. Loadings fluxes of PAHs into the Masan Bay and its vicinity were 39.2 g/day via atmosphere and 10.3 g/day via rivers, showing that atmospheric input was about 4 times higher than riverine one. Therefore, in order to minimize the contamination burden of PAHs from terrestrial sources to the Masan Bay and its vicinity, the control and management of PAHs deriving from atmosphere will be necessary.

Quantitative Assessment of the Effects of Sediment Dredging on Water Quality in Masan Bay using Ecosystem Model (생태계 모델을 이용한 마산만 퇴적물 준설이 수질에 미치는 영향 정량평가)

  • Kim, Jin-Ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.521-526
    • /
    • 2016
  • Sediment dredging can permanently remove pollutants from an aquatic ecosystem, which is considered an effective approach to aquatic ecosystem restoration. In this study, we quantified the effects of sediment dredging on water quality in Masan Bay by calculation of oxygen demanding rate. We applied ecosystem model including water and sediment quality module in Masan Bay. The results showed that the increase of calculated oxygen demanding rate is significant due to sediment dredging of both inner part and outer part of Masan Bay. On the other hand, the increase is gradual due to decrease of anthropogenic load. It meant sediment dredging can improve water quality of Masan Bay more. Using correlation equation between oxygen demanding rate and sediment oxygen demand, we calculated that the area of sediment dredging which is equal to the effects of 10 % reduction of anthropogenic load. It is $1.68km^2$ in inner part and $3.15km^2$ in outer part of the Masan Bay. This Meant that to improve water quality of Masan Bay, sediment dredging in inner part is efficient method.

EFFECTS OF THE POLLUTION ON THE BENTHIC MACROFAUNA IN MASAN BAY, KOREA (馬山灣의 海洋汚染이 底棲動物群集에 미치는 影響)

  • Hong, Jae-sang;Lee, Jae Hac
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.169-179
    • /
    • 1983
  • Distribution of soft-bottom macrobenthos en Masan Bay was studied in terms of seasonal changes in species composition, abundance, and diversity from August, 1980 to May, 1981. Of the 65 species ot benthic macrofauna observed, polychaete was the most dominant taxonomic group with 34 species, which accounted for 72% of the total number of benthic animals. Species richness and numerical abundance seemed to decrease from the outer Bay stations to the innermost bay station, where certain zoological groups such as crustaceans and echinoderms were eliminated. Based on the ecological indices calculated, the inner basins of the Masan Bay apparently receive high input levels of organic material derived from land drainage, domestic wastes, and industrial complex installed in Masan city and nearby urban area. Particularly, at two inner bay stations of the Masan Bay, these levels seemed to approach the limit of the degradative capacity of the muddy bottom ecosystem, and have significantly affected the characteristics and distfibution of the benthic macrofauna.

  • PDF

Pollutant Budget Change Due to Construction of Wastewater Treatment Plant in Masan Bay (하수처리장 건설에 의한 마산만의 오염물질 수지변화)

  • 조홍연;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2000
  • The effects of the WfP construction are analysed quantitatively based on the pollutant budget change in Masan Bay. The reduction effects of the watershed pollutant loads are clearly shown, while the positive influence of the water quality (WQ) are not substantial because the pollutant load also increased continusly after WTP construction. The reduction effects of the COD, 55, TN and TP parameters are 17.6%, 68.9%,66.7%, and 38%, respectively in Masan Bay (zone I). The environmental condition of the northern part of Chinhae Bay (zone ll), however, is slowly degraded because of the direct and indirect effects - effluents discharge from the WTP and pollutants release from the sediment, respectively.

  • PDF

Spatial Distribution Patterns of Macrobenthic Communities during Winter and Summer in the Masan Bay Special Management Area, Southern Coast of Korea (남해특별관리해역인 마산만에서 동계 및 하계에 출현하는 대형저서동물군집의 공간분포 양상)

  • Choi, Jin-Woo;Seo, Jin-Young;Lee, Chang-Hoon;Ryu, Tae-Kwon;Sung, Chan-Gyung;Han, Gi-Myung;Hyun, Sang-Min
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.381-395
    • /
    • 2005
  • The spatial distributions of macrobenthic communities in Masan Bay were investigated during summer and winter, 2004. A total of 104 species were sampled with mean density of $448ind./m^2$ and biomass of $77.1g/m^2$ in winter. In summer, a total of 107 species occurred with $485ind./m^2$ and a biomass of $94.5g/m^2$. The most dominant species in winter were Paraprionospio pinnata (24.2%) among polychaetous worms and Theora fragilis (14.1%) among molluscs, but they were replaced in summer by Prionospio chirrifera (20.4%) and Lumbrineris longifolia (14.5%). The difference in species composition and abundance of benthic communities between the two seasons was due to the hypoxia in the bottom layer of the inner bay during summer, which defaunated the macrofauna of the sediments. In the winter when DO concentration increased to normoxia, the pelagic larvae of benthic fauna settled in the soft sediments, but there was a spatial gradient in values of total biomass, density, and H' and benthic pollution index (BPI): higher values were found toward the mouth of the bay. The multivariate analyses like the cluster analysis and MDS ordination showed that Masan Bay could be divided into two or four stational groups in winter and summer whether the hypoxia occurred or not. Group I consisted of sites at the inner bay and central area and Group II, sites at the bay mouth. In summer the inner bay area could be further divided into the shallow impoverished area and the deeper abiotic one.

Relationship between Pollution Factors and Environmental Variation in Waters around Masan Bay (마산만 주변 해역에서 오염인자와 해양환경변동과의 관계)

  • Shin, So-Young;Lee, Chung-Il;Hwang, Sun-Chool;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.69-79
    • /
    • 2004
  • This study focuses on the relationship between pollution factors around Masan, Changwon and Chinhae city considerd as main pollution sources and marine environment in Masan bay of Korea. Water quality data measured In Jinhae bay and environmental investigation data in Masan, Changwon and Jinhae cities from 1981 to 1998 were used for this study. Annual means and standard deviations of COD, DIN and DIP concentrations from 1981 to 1998 showed that both their concentration and fluctuations were higher in the inner part of Masan bay (region A) than near Somodo (region B). Sediment dredging in Masan bay had been done from 1990 to 1994. After dredging, COD concentration has been decreasing In surface layer. Also water pollution was gradually spreaded from the inner part to the outer part of the bay due to the continuous inflow of domestic sewage and industrial wastewater. In the late of 1990s, the pollution was heavier. DIN and DIP concentrations were found to be increased by establishment of industry complex and decreased by sewage treatment plant near the city adjacent to Jinhae bay, 1993. The correlation between COD, DIN and DIP changes and neighbor cities' pollution sources were calculated From 1981 to 1998, correlation coefficient (r) was over 0.8 except for the bottom of region A From 1981 to 1998, r between the DIP concentration and population was over 0.65 except for the surface of region A, and the r between the DIP and the number of factories was over 0.6 too, in region B.

  • PDF

Response of Benthic Foraminifera to Sedimentary Pollution in Masan Bay, Korea (마산만 퇴적환경 오염에 따른 저서성 유공충 분포 변화)

  • Woo, Han-Jun;Kim, Hyo-Young;Jeong, Kap-Sik;Chun, Jong-Hwa;Kim, Seong-Eun;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.144-154
    • /
    • 1999
  • Masan Bay is highly polluted by the discharge of large quantities of effluents from the industrial complex and domestic sewage of Masan City, Southeast Korea. Surface sediments from 9 stations were used for geochemical and foraminiferal analyses in order to investigate foraminiferal response to sedimentary pollution in the Bay. The heavy metal concentrations in sediments are relatively higher than those in Kyeonggi Bay and Daesan area, west coastal region of Korea. Zn, Cd, Pb, and As are more concentrated than in world average shale, indicating that the municipal and industrial effluents cause sediment contamination. Responses of benthic foraminifera to the sedimentary pollution effect document a degree of pollution in Masan Bay. The species number and diversity in Masan Bay had lower values than those in Gadeog Channel. In Masan Bay, agglutinated foraminifera are abundant and calcareous foraminiferal tests were frequently pyritized. Eggerella advena and Trochammina pacifica dominated at levels of pollution and could be opportunistic species. These data will provide a baseline for future assessments of environmental quality in Masan Bay.

  • PDF