• Title/Summary/Keyword: Markov number

Search Result 347, Processing Time 0.026 seconds

English Phoneme Recognition using Segmental-Feature HMM (분절 특징 HMM을 이용한 영어 음소 인식)

  • Yun, Young-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.167-179
    • /
    • 2002
  • In this paper, we propose a new acoustic model for characterizing segmental features and an algorithm based upon a general framework of hidden Markov models (HMMs) in order to compensate the weakness of HMM assumptions. The segmental features are represented as a trajectory of observed vector sequences by a polynomial regression function because the single frame feature cannot represent the temporal dynamics of speech signals effectively. To apply the segmental features to pattern classification, we adopted segmental HMM(SHMM) which is known as the effective method to represent the trend of speech signals. SHMM separates observation probability of the given state into extra- and intra-segmental variations that show the long-term and short-term variabilities, respectively. To consider the segmental characteristics in acoustic model, we present segmental-feature HMM(SFHMM) by modifying the SHMM. The SFHMM therefore represents the external- and internal-variation as the observation probability of the trajectory in a given state and trajectory estimation error for the given segment, respectively. We conducted several experiments on the TIMIT database to establish the effectiveness of the proposed method and the characteristics of the segmental features. From the experimental results, we conclude that the proposed method is valuable, if its number of parameters is greater than that of conventional HMM, in the flexible and informative feature representation and the performance improvement.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

An Evaluative Analysis of the Referral System for Insurance Patients (보험진료체계 개편의 효과에 대한 연구)

  • Han, Dal-Sun;Kim, Byungy-Ik;Lee, Young-Jo;Bae, Sang-Soo;Kwon, Soon-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.4 s.36
    • /
    • pp.485-495
    • /
    • 1991
  • This study examined the effects of referral requirements for insurance patients which have been enforced since July 1, 1989 when medical insurance coverage was extended to the whole population except beneficiaries of medical assistance program. The requirements are mainly aimed at discouraging the use of tertiary care hospitals by imposing restrictions on the patient's choice of a medical service facility. The expectation is that such change in the pattern of medical care utilization would produce several desirable effects including increased efficiency in patient care and balanced development of various types of medical service facilities. In this study, these effects were assessed by the change in the number of out-patient visits and bed-days per illness episode and the share of each type of facility in the volume of services and the amount of expenditures after the implementation of the new referral system. The data for analysis were obtained from the claims to the insurance for government and school employees. The sample was drawn from the claims for the patients treated during the first six months of 1989, prior to the enforcement of referral requirements, and those of the patients treated during the first six months of 1990, after the enforcement. The 1989 sample included 299,824 claims (3.6% of total) and the 1990 sample included 332,131 (3.7% of total). The data were processed to make the unit of analysis an illness episode instead of an insurance claim. The facilities and types of care utilized for a given illness episode are defined to make up the pathway of medical care utilization. This pathway was conceived of as a Markov Chain process for further analysis. The conclusion emerged from the analysis is that the enforcement of referral requirements resulted in less use of tertiary care hospitals, and thereby decreased the volume of services and the amount of insurance expenses per illness episode. However, there are a few points that have to be taken into account in relation to the conclusion. The new referral system is likely to increase the use of medical services not covered by insurance, so that its impact on national health expenditures would be different from that on insurance expenditures. The extension of insurance coverage must have inereased patient load for all types of medical service organizations, and this increase may be partly responsible for producing the effects attributed to the new referral system. For example, excessive patient load for tertiary care hospitals may lead to the transfer of their patients to other types of facilities. Another point is that the data for this study correspond to very early phase of the new system. But both patients and medical care providers would adapt themselves to the new system to avoid or overcome its disadvantages for them, so as that its effects could change over time. Therefore, it is still necessary to closely monitor the impact of the referral requirements.

  • PDF

Measuring the Impact of Competition on Pricing Behaviors in a Two-Sided Market

  • Kim, Minkyung;Song, Inseong
    • Asia Marketing Journal
    • /
    • v.16 no.1
    • /
    • pp.35-69
    • /
    • 2014
  • The impact of competition on pricing has been studied in the context of counterfactual merger analyses where expected optimal prices in a hypothetical monopoly are compared with observed prices in an oligopolistic market. Such analyses would typically assume static decision making by consumers and firms and thus have been applied mostly to data obtained from consumer packed goods such as cereal and soft drinks. However such static modeling approach is not suitable when decision makers are forward looking. When it comes to the markets for durable products with indirect network effects, consumer purchase decisions and firm pricing decisions are inherently dynamic as they take into account future states when making purchase and pricing decisions. Researchers need to take into account the dynamic aspects of decision making both in the consumer side and in the supplier side for such markets. Firms in a two-sided market typically subsidize one side of the market to exploit the indirect network effect. Such pricing behaviors would be more prevalent in competitive markets where firms would try to win over the battle for standard. While such qualitative expectation on the relationship between pricing behaviors and competitive structures could be easily formed, little empirical studies have measured the extent to which the distinct pricing structure in two-sided markets depends on the competitive structure of the market. This paper develops an empirical model to measure the impact of competition on optimal pricing of durable products under indirect network effects. In order to measure the impact of exogenously determined competition among firms on pricing, we compare the equilibrium prices in the observed oligopoly market to those in a hypothetical monopoly market. In computing the equilibrium prices, we account for the forward looking behaviors of consumers and supplier. We first estimate a demand function that accounts for consumers' forward-looking behaviors and indirect network effects. And then, for the supply side, the pricing equation is obtained as an outcome of the Markov Perfect Nash Equilibrium in pricing. In doing so, we utilize numerical dynamic programming techniques. We apply our model to a data set obtained from the U.S. video game console market. The video game console market is considered a prototypical case of two-sided markets in which the platform typically subsidizes one side of market to expand the installed base anticipating larger revenues in the other side of market resulting from the expanded installed base. The data consist of monthly observations of price, hardware unit sales and the number of compatible software titles for Sony PlayStation and Nintendo 64 from September 1996 to August 2002. Sony PlayStation was released to the market a year before Nintendo 64 was launched. We compute the expected equilibrium price path for Nintendo 64 and Playstation for both oligopoly and for monopoly. Our analysis reveals that the price level differs significantly between two competition structures. The merged monopoly is expected to set prices higher by 14.8% for Sony PlayStation and 21.8% for Nintendo 64 on average than the independent firms in an oligopoly would do. And such removal of competition would result in a reduction in consumer value by 43.1%. Higher prices are expected for the hypothetical monopoly because the merged firm does not need to engage in the battle for industry standard. This result is attributed to the distinct property of a two-sided market that competing firms tend to set low prices particularly at the initial period to attract consumers at the introductory stage and to reinforce their own networks and eventually finally to dominate the market.

  • PDF

A Study on Speech Recognition Using the HM-Net Topology Design Algorithm Based on Decision Tree State-clustering (결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘을 이용한 음성인식에 관한 연구)

  • 정현열;정호열;오세진;황철준;김범국
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.199-210
    • /
    • 2002
  • In this paper, we carried out the study on speech recognition using the KM-Net topology design algorithm based on decision tree state-clustering to improve the performance of acoustic models in speech recognition. The Korean has many allophonic and grammatical rules compared to other languages, so we investigate the allophonic variations, which defined the Korean phonetics, and construct the phoneme question set for phonetic decision tree. The basic idea of the HM-Net topology design algorithm is that it has the basic structure of SSS (Successive State Splitting) algorithm and split again the states of the context-dependent acoustic models pre-constructed. That is, it have generated. the phonetic decision tree using the phoneme question sets each the state of models, and have iteratively trained the state sequence of the context-dependent acoustic models using the PDT-SSS (Phonetic Decision Tree-based SSS) algorithm. To verify the effectiveness of the above algorithm we carried out the speech recognition experiments for 452 words of center for Korean language Engineering (KLE452) and 200 sentences of air flight reservation task (YNU200). Experimental results show that the recognition accuracy has progressively improved according to the number of states variations after perform the splitting of states in the phoneme, word and continuous speech recognition experiments respectively. Through the experiments, we have got the average 71.5%, 99.2% of the phoneme, word recognition accuracy when the state number is 2,000, respectively and the average 91.6% of the continuous speech recognition accuracy when the state number is 800. Also we haute carried out the word recognition experiments using the HTK (HMM Too1kit) which is performed the state tying, compared to share the parameters of the HM-Net topology design algorithm. In word recognition experiments, the HM-Net topology design algorithm has an average of 4.0% higher recognition accuracy than the context-dependent acoustic models generated by the HTK implying the effectiveness of it.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

A Study on the Comovements and Structural Changes of Global Business Cycles using MS-VAR models (MS-VAR 모형을 이용한 글로벌 경기변동의 동조화 및 구조적 변화에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.1-22
    • /
    • 2016
  • We analyzed the international comovements and structural changes in the quarterly real GDP by the Markov-switching vector autoregressive model (MS-VAR) from 1971(1) to 2016(1). The main results of this study were as follows. First, the business cycle phenomenon that occurs in the models or individual time series in real GDP has been grasped through the MS-VAR models. Unlike previous studies, this study showed the significant comovements, asymmetry and structural changes in the MS-VAR model using a real GDP across countries. Second, even if there was a partial difference, there were remarkable structural changes in the economy contraction regime(recession), such as 1988(2) ending the global oil shock crisis and 2007(3) starting the global financial crisis by the MS-VAR model. Third, large-scale structural changes were generated in the economic expansion and/or contraction regime simultaneously among countries. We found that the second world oil shocks that occurred after the first global oil shocks of 1973 and 1974 were the main reasons that caused the large-scale comovements of the international real GDP among countries. In addition, the spillover between Korea and 5 countries has been weak during the Asian currency crisis from 1997 to 1999, but there was strong transmission between Korea and 5 countries at the end of 2007 including the period of the global financial crisis. Fourth, it showed characteristics that simultaneous correlation appeared to be high due to the country-specific shocks generated for each country with the regime switching using real GDP since 1973. Thus, we confirmed that conclusions were consistent with a number of theoretical and empirical evidence available, and the macro-economic changes were mainly caused by the global shocks for the past 30 years. This study found that the global business cycles were due to large-scale asymmetric shocks in addition to the general changes, and then showed the main international comovements and/or structural changes through country-specific shocks.

  • PDF