기존의 정상성 Markov Chain 모형은 자료 자체의 Markov 특성만을 고려하여 모의하는 기법으로서 수자원 설계에서 여러 가지 목적으로 이용되어 지고 있다. 그러나 일강수량의 천이확률 및 매개변수 등이 과거와 일정하다는 정상성을 기본 가정으로 하기 때문에 평균의 변동성 등과 같은 외부충격을 모형에 적용할 수 없다. 이러한 관점에서 본 연구의 가장 큰 목적은 기존일강수량 모형을 외부인자를 받아들일 수 있는 모형으로 개발하는 것이다. 즉, Markov Chain 모형의 매개변수인 천이확률과 확률분포형의 매개변수 등을 연결함수(link function)를 통해 외부인자와 연동하도록 하였으며 정준상관분석을 통해 매개변수를 추정하였다. 개발된 모형을 서울지방 1961-2006년까지의 일강수량 자료를 대상으로 검증하는 절차를 가졌다. 추정된 결과를 보면 계절강수량의 특성뿐만 아니라 일강수량의 특성 또한 적절하게 모의되는 것을 확인할 수 있다. 따라서 본 연구에서 개발된 모형은 GCM 예측결과를 입력자료로 활용한다면 일강수계열의 장단기 모의를 위한 downscaling 기법으로 사용될 수 있다. 또한, 기후변화 시나리오가 입력자료로 이용된다면 기후변화에 따른 수자원 영향 평가를 위한 downscaling 기법으로 활용이 가능할 것으로 판단된다.
The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.
최근 기후변화 영향으로 인해 수문변동성이 크게 증가되고 있으며 이러한 변동성을 고려하기 위한 방안으로서 강수량 모의발생 기법에 대한 중요성이 대두되고 있다. 본 연구에서는 복잡한 강수발생 패턴을 인지하고 강수량의 다양한 분포특성을 고려할 수 있는 혼합분포를 이용한 동질성 Hidden Markov Chain(HMM) 모형을 제안하였다. HMM 모형의 개선효과를 검증하기 위해서 기존 Markov Chain 모형과 비교 하였으며 서울관측소 및 전주관측소를 대상으로 연구를 진행하였다. 계절강수량 및 일강수량 등 다양한 시간규모에서 모형의 적합성을 평가하기 위해서 천이확률, 평균, 분산, 왜곡도 및 첨예도 등을 비교하였으며 HMM 모형이 기존 Markov Chain 모형에 비해서 개선된 모의능력을 확인할 수 있었다. 특히, HMM 모형은 극치강수량을 재현하는데 있어서 기존 Markov Chain 모형에 비해서 월등한 모의능력을 보여주었다. 이러한 점에서 장기유출량 및 확률홍수량 등을 산정하기 위한 입력자료로 활용이 충분히 가능할 것으로 판단된다.
본 논문에서는 은닉 마코프 모델을 이용하여 논문 모집 공고에서 정보를 추출하는 시스템을 제안한다. 논문 모집 공고는 완전히 정형화된 형식을 가지지는 않지만, 내용의 출현 순서에 따른 흐름이 어느 정도 존재한다. 따라서 순차적인 데이터를 해석하는데 강점을 지닌 은닉 마코프 모델을 논문 모집 공고를 분석하는데 사용한다. 하지만, 논문 모집 공고를 은닉 마코프 모델로 직관적으로 모델링하면 정보 경계가 정확히 인식되지 않는 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 2-단계의 은닉 마코프 모델을 사용한다. 즉, 첫 번째 단계에서, 문서를 구로 모델링한 P-HMM(Phrase hidden Markov model)이 지역적으로 문서를 인식한다. 그리고 두 번째 단계에서 D-HMM(Document hidden Markov model)은 문서가 가진 전체적인 구조와 정보의 흐름을 파악한다. 웹에서 수집된 400개의 논문 모집 공고에 대한 실험 결과, F-measure 성능이 0.49를 보인다. 이는 직관적인 은닉 마코프 모델보다 F-measure로 0.15 정도 향상된 결과이다.
Traditional time based preventive maintenance is used to constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is scheduled by RCM(Reliability-Centered Maintenance) evaluation. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by a Markov model. In case study, simulation results about RCM are used to the real historical data of combustion turbine generating units in Korean power systems.
Markov Chains has proven to be effective in predicting human behaviors in the areas of web site assess, multimedia educational system, and driving environment. In order to extend an application area of predicting human behaviors using Markov Chains, this study was conducted to investigate whether Markov Chains could be used to predict human behavior in selecting mobile phone menu item. Compared to the aforementioned application areas, this study has different aspects in using Markov Chains : m-order 1-step Markov Model and the concept of Power Law of Learning. The results showed that human behaviors in predicting mobile phone menu selection were well fitted into with m-order 1-step Markov Model and Power Law of Learning in allocating history path vector weights. In other words, prediction of mobile phone menu selection with Markov Chains was capable of user's actual menu selection.
이동성이 중요시되는 네트워크에서 특정 프로토콜의 성능 평가를 위해서는 노드의 이동패턴을 정확하게 표현할 수 있는 Mobility Model이 필요하다. 노드의 연속적인 이동패턴을 필요로 하는 Mobile Ad-hoc 네트워크를 위해선 Markov process 기반의 Gauss-Markov Mobility Model이 적절하다. 그러나 맵의 엣지 부근에서 노드 이동의 부적절한 처리로 인해, 기존의 Gauss-Markov Model은 편중된 이동 패턴을 야기한다. 본 논문은 엣지 부근의 평균 이동각도를 랜덤하게 조정함으로써 기존의 모델이 가진 문제를 해결하고, 시뮬레이션을 통해서 이를 검증한다.
일반적으로 축구 비디오 데이터는 멀티모달과 멀티레이어 속성을 지닌다. 이러한 데이터를 다루기 적합한 모델은 동적 베이지안 네트워크(Dynamic Bayesian Network: DBN) 형태의 위계적 은닉 마르코프 모델(Hierarchical Hidden Markov Model: HHMM)이다. 이러한 HHMM 중 다중속성의 특징들이 서로 상호작용하는 PHHMM(Product Hierarchical Hidden Markov Model)이 있다. 본 논문에서는 PHHMM 을 축구 경기의 Play/Break 이벤트 검색 및 분석에 적용하였고 바람직한 결과를 얻었다.
The purpose of RAM analysis in weapon systems is to reduce life cycle costs, along with improving combat readiness by meeting RAM target value. We analyzed the sensitivity of the RAM analysis parameters to the use of the operating system by using the Markov Process based model (MPS, Markov Process Simulation) developed for RAM analysis. A Markov process-based RAM analysis model was developed to analyze the sensitivity of parameters (MTBF, MTTR and ALDT) to the utility of the 81mm mortar. The time required for the application to reach the steady state is about 15,000H, which is about 2 years, and the sensitivity of the parameter is highest for ALDT. In order to improve combat readiness, there is a need for continuous improvement in ALDT.
본 논문은 Markov 모델에 의한 효과적인 한국어 음소모델 작성방식과 인식에 대하여 기술한다. hidden Markov 모델은 음성신호 고유의 비정상성을 효과적으로 모델화할 수 있다. 본 논문에서는 음소의 일련의 변화하는 특성, 즉 천이-안정-천이의 변화를 나타내기 위하여 3상태 음소모델을 제안한다. 또한 음소길이가 인식성능에 영향을 미치는 중요한 요소임을 밝히고 길이를 고려한 3상태 hidden Markov 모델을 사용하여 인식률을 개선시킬 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.