• Title/Summary/Keyword: Markov chain Monte Carlo

Search Result 270, Processing Time 0.029 seconds

The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling (확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템)

  • Cho, Tae Jun;Lee, Jeong Bae;Kim, Seong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.29-39
    • /
    • 2012
  • The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.

Application of Bootstrap and Bayesian Methods for Estimating Confidence Intervals on Biological Reference Points in Fisheries Management (부트스트랩과 베이지안 방법으로 추정한 수산자원관리에서의 생물학적 기준점의 신뢰구간)

  • Jung, Suk-Geun;Choi, Il-Su;Chang, Dae-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • To evaluate uncertainty and risk in biological reference points, we applied a bootstrapping method and a Bayesian procedure to estimate the related confidence intervals. Here we provide an example of the maximum sustainable yield (MSY) of turban shell, Batillus cornutus, estimated by the Schaefer and Fox models. Fitting the time series of catch and effort from 1968 to 2006 showed that the Fox model performs better than the Schaefer model. The estimated MSY and its bootstrap percentile confidence interval (CI) at ${\alpha}=0.05$ were 1,680 (1,420-1,950) tons for the Fox model and 2,170 (1,860-2,500) tons for the Schaefer model. The CIs estimated by the Bayesian approach gave similar ranges: 1,710 (1,450-2,000) tons for the Fox model and 2,230 (1,760-2,930) tons for the Schaefer model. Because uncertainty in effort and catch data is believed to be greater for earlier years, we evaluated the influence of sequentially excluding old data points by varying the first year of the time series from 1968 to 1992 to run 'backward' bootstrap resampling. The results showed that the means and upper 2.5% confidence limit (CL) of MSY varied greatly depending on the first year chosen whereas the lower 2.5% CL was robust against the arbitrary selection of data, especially for the Schaefer model. We demonstrated that the bootstrap and Bayesian approach could be useful in precautionary fisheries management, and we advise that the lower 2.5% CL derived by the Fox model is robust and a better biological reference point for the turban shells of Jeju Island.

Bayesian methods in clinical trials with applications to medical devices

  • Campbell, Gregory
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.561-581
    • /
    • 2017
  • Bayesian statistics can play a key role in the design and analysis of clinical trials and this has been demonstrated for medical device trials. By 1995 Bayesian statistics had been well developed and the revolution in computing powers and Markov chain Monte Carlo development made calculation of posterior distributions within computational reach. The Food and Drug Administration (FDA) initiative of Bayesian statistics in medical device clinical trials, which began almost 20 years ago, is reviewed in detail along with some of the key decisions that were made along the way. Both Bayesian hierarchical modeling using data from previous studies and Bayesian adaptive designs, usually with a non-informative prior, are discussed. The leveraging of prior study data has been accomplished through Bayesian hierarchical modeling. An enormous advantage of Bayesian adaptive designs is achieved when it is accompanied by modeling of the primary endpoint to produce the predictive posterior distribution. Simulations are crucial to providing the operating characteristics of the Bayesian design, especially for a complex adaptive design. The 2010 FDA Bayesian guidance for medical device trials addressed both approaches as well as exchangeability, Type I error, and sample size. Treatment response adaptive randomization using the famous extracorporeal membrane oxygenation example is discussed. An interesting real example of a Bayesian analysis using a failed trial with an interesting subgroup as prior information is presented. The implications of the likelihood principle are considered. A recent exciting area using Bayesian hierarchical modeling has been the pediatric extrapolation using adult data in clinical trials. Historical control information from previous trials is an underused area that lends itself easily to Bayesian methods. The future including recent trends, decision theoretic trials, Bayesian benefit-risk, virtual patients, and the appalling lack of penetration of Bayesian clinical trials in the medical literature are discussed.

A Study on the Effects of Oil Shocks and Energy Efficient Consumption Structure with a Bayesian DSGE Model (베이지안 동태확률일반균형모형을 이용한 유가충격 및 에너지 소비구조 전환의 효과분석)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.215-242
    • /
    • 2010
  • This study constructs a bayesian neoclassical DSGE model that applies oil usage. The model includes technology shocks, oil price shocks, and shocks to energy policies as exogenous driving forces. First, this study aims to analyze the roles of these exogenous shocks in the Korean business cycle. Second, this study examines the effects of long-term changes in the energy consumption structure, including the reduction in oil use as a share of energy consumption and improvement in oil efficiency. In the case of oil price shocks, results show that these shocks exert recessionary pressure on the economy in line with those obtained in the previous literature. On the other hand, shocks to energy policies, which reduce oil consumption per capital, result in opposite consequences to oil price shocks, decreasing oil consumption. Also, counterfactual exercises show that long-term changes in the energy consumption structure would mitigate the contractionary effects of oil price shocks.

  • PDF

A Review on the Analysis of Life Data Based on Bayesian Method: 2000~2016 (베이지안 기법에 기반한 수명자료 분석에 관한 문헌 연구: 2000~2016)

  • Won, Dong-Yeon;Lim, Jun Hyoung;Sim, Hyun Su;Sung, Si-il;Lim, Heonsang;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • Purpose: The purpose of this study is to arrange the life data analysis literatures based on the Bayesian method quantitatively and provide it as tables. Methods: The Bayesian method produces a more accurate estimates of other traditional methods in a small sample size, and it requires specific algorithm and prior information. Based on these three characteristics of the Bayesian method, the criteria for classifying the literature were taken into account. Results: In many studies, there are comparisons of estimation methods for the Bayesian method and maximum likelihood estimation (MLE), and sample size was greater than 10 and not more than 25. In probability distributions, a variety of distributions were found in addition to the distributions of Weibull commonly used in life data analysis, and MCMC and Lindley's Approximation were used evenly. Finally, Gamma, Uniform, Jeffrey and extension of Jeffrey distributions were evenly used as prior information. Conclusion: To verify the characteristics of the Bayesian method which are more superior to other methods in a smaller sample size, studies in less than 10 samples should be carried out. Also, comparative study is required by various distributions, thereby providing guidelines necessary.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Factors affecting regional population of Korea using Bayesian quantile regression (베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석)

  • Kim, Minyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.823-835
    • /
    • 2021
  • Identification of factors influencing regional population is critical for establishing government's population policies as well as for improving residents' social, economic and cultural well-being in the region. In this study we analysed the data from 2019 Population Housing Survey in Korea to identify the factors affecting the population size in each of the three regions: Seoul, metropolitan cities, and provincial regions. We applied a Bayesian quantile regression to account for asymmetry and heteroscedasticity of data. The analysis results showed that the effects of factors vary greatly between the three regions of Seoul, metropolitan cities, and provincial regions as well as between sub regions within the same region. These results suggest that population-related variables have very heterogeneous characteristics from region to region and therefore it is important to establish customized population policies that suit regional characteristics rather than uniform population policies that apply to every region.

Effects of Hydro-Climate Conditions on Calibrating Conceptual Hydrologic Partitioning Model (개념적 수문분할모형의 보정에 미치는 수문기후학적 조건의 영향)

  • Choi, Jeonghyeon;Seo, Jiyu;Won, Jeongeun;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.568-580
    • /
    • 2020
  • Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.

Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data (보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교)

  • Rhee, Eun Hee;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.