• Title/Summary/Keyword: Markov Chain Simulation

Search Result 182, Processing Time 0.023 seconds

Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain (동질성 Hidden Markov Chain 모형을 이용한 일강수량 모의기법 개발)

  • Kwon, Hyun-Han;Kim, Tae Jeong;Hwang, Seok-Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1861-1870
    • /
    • 2013
  • A climate change-driven increased hydrological variability has been widely acknowledged over the past decades. In this regards, rainfall simulation techniques are being applied in many countries to consider the increased variability. This study proposed a Homogeneous Hidden Markov Chain(HMM) designed to recognize rather complex patterns of rainfall with discrete hidden states and underlying distribution characteristics via mixture probability density function. The proposed approach was applied to Seoul and Jeonju station to verify model's performance. Statistical moments(e.g. mean, variance, skewness and kurtosis) derived by daily and seasonal rainfall were compared with observation. It was found that the proposed HMM showed better performance in terms of reproducing underlying distribution characteristics. Especially, the HMM was much better than the existing Markov Chain model in reproducing extremes. In this regard, the proposed HMM could be used to evaluate a long-term runoff and design flood as inputs.

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

A Prediction Method using Markov chain for Step Size Control in FMI based Co-simulation (FMI기반 co-simulation에서 step size control을 위한 Markov chain을 사용한 예측 방법)

  • Hong, Seokjoon;Lim, Ducsun;Kim, Wontae;Joe, Inwhee
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1430-1439
    • /
    • 2019
  • In Functional Mockup Interface(FMI)-based co-simulation, a bisectional algorithm can be used to find the zerocrossing point as a way to improve the accuracy of the simulation results. In this paper, the proposed master algorithm(MA) analyzes the repeated interval graph and predicts the next interval by applying the Markov Chain to the step size. In the simulation, we propose an algorithm to minimize the rollback by storing the step size that changes according to the graph type as an array and applying it to the next prediction interval when the rollback occurs in the simulation. Simulation results show that the proposed algorithm reduces the simulation time by more than 20% compared to the existing algorithm.

Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling (마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석)

  • Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

Daily Rainfall Simulation by Rainfall Frequency and State Model of Markov Chain (강우 빈도와 마코프 연쇄의 상태모형에 의한 일 강우량 모의)

  • Jung, Young-Hun;Kim, Buyng-Sik;Kim, Hung Soo;Shim, Myung-Pil
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • In Korea, most of the rainfalls have been concentrated in the flood season and the flood study has received more attention than low flow analysis. One of the reasons that the analysis of low flows has less attention is the lacks of the required data like daily rainfall and so we have used the stochastic processes such as pulse noise, exponential distribution, and state model of Markov chain for the rainfall simulation in short term such as daily. Especially this study will pay attention to the state model of Markov chain. The previous study had performed the simulation study by the state model without considerations of the flood and non-flood periods and without consideration of the frequency of rainfall for the period of a state. Therefore this study considers afore mentioned two cases and compares the results with the known state model. As the results, the RMSEs of the suggested and known models represent the similar results. However, the PRE(relative percentage error) shows the suggested model is better results.

  • PDF

Prediction method of node movement using Markov Chain in DTN (DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법)

  • Jeon, Il-kyu;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1013-1019
    • /
    • 2016
  • This paper describes a novel Context-awareness Markov Chain Prediction (CMCP) algorithm based on movement prediction using Markov chain in Delay Tolerant Network (DTN). The existing prediction models require additional information such as a node's schedule and delivery predictability. However, network reliability is lowered when additional information is unknown. To solve this problem, we propose a CMCP model based on node behaviour movement that can predict the mobility without requiring additional information such as a node's schedule or connectivity between nodes in periodic interval node behavior. The main contribution of this paper is the definition of approximate speed and direction for prediction scheme. The prediction of node movement forwarding path is made by manipulating the transition probability matrix based on Markov chain models including buffer availability and given interval time. We present simulation results indicating that such a scheme can be beneficial effects that increased the delivery ratio and decreased the transmission delay time of predicting movement path of the node in DTN.

Stochastic simulation based on copula model for intermittent monthly streamflows in arid regions

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.488-488
    • /
    • 2015
  • Intermittent streamflow is common phenomenon in arid and semi-arid regions. To manage water resources of intermittent streamflows, stochactic simulation data is essential; however the seasonally stochastic modeling for intermittent streamflow is a difficult task. In this study, using the periodic Markov chain model, we simulate intermittent monthly streamflow for occurrence and the periodic gamma autoregressive and copula models for amount. The copula models were tested in a previous study for the simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data; however, the copula models have never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system in the present study. A few drawbacks of the PGAR model were identified, such as significant underestimation of minimum values on an aggregated yearly time scale and restrictions of the parameter boundaries. Conversely, the copula models do not present such drawbacks but show feasible reproduction of key and operational statistics. We concluded that the periodic Markov chain based the copula models is a practicable method to simulate intermittent monthly streamflow time series.

  • PDF

Valuation of American Option Prices Under the Double Exponential Jump Diffusion Model with a Markov Chain Approximation (이중 지수 점프확산 모형하에서의 마코브 체인을 이용한 아메리칸 옵션 가격 측정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.249-253
    • /
    • 2012
  • This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).

Valuation of European and American Option Prices Under the Levy Processes with a Markov Chain Approximation

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • This paper suggests a numerical method for valuation of European and American options under the two L$\acute{e}$vy Processes, Normal Inverse Gaussian Model and the Variance Gamma model. The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the existing numerical method, the lattice-based method.

Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution (불연속 Kernel-Pareto 분포를 이용한 일강수량 모의 기법 개발)

  • Kwon, Hyun-Han;So, Byung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.277-284
    • /
    • 2011
  • The limitations of existing Markov chain model for reproducing extreme rainfalls are a known problem, and the problems have increased the uncertainties in establishing water resources plans. Especially, it is very difficult to secure reliability of water resources structures because the design rainfall through the existing Markov chain model are significantly underestimated. In this regard, aims of this study were to develop a new daily rainfall simulation model which is able to reproduce both mean and high order moments such as variance and skewness using a piecewise Kernel-Pareto distribution. The proposed methods were applied to summer and fall season rainfall at three stations in Han river watershed in Korea. The proposed Kernel-Pareto distribution based Markov chain model has been shown to perform well at reproducing most of statistics such as mean, standard deviation and skewness while the existing Gamma distribution based Markov chain model generally fails to reproduce high order moments. It was also confirmed that the proposed model can more effectively reproduce low order moments such as mean and median as well as underlying distribution of daily rainfall series by modeling extreme rainfall separately.