• 제목/요약/키워드: Markov Chain Simulation

검색결과 182건 처리시간 0.021초

동질성 Hidden Markov Chain 모형을 이용한 일강수량 모의기법 개발 (Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain)

  • 권현한;김태정;황석환;김태웅
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1861-1870
    • /
    • 2013
  • 최근 기후변화 영향으로 인해 수문변동성이 크게 증가되고 있으며 이러한 변동성을 고려하기 위한 방안으로서 강수량 모의발생 기법에 대한 중요성이 대두되고 있다. 본 연구에서는 복잡한 강수발생 패턴을 인지하고 강수량의 다양한 분포특성을 고려할 수 있는 혼합분포를 이용한 동질성 Hidden Markov Chain(HMM) 모형을 제안하였다. HMM 모형의 개선효과를 검증하기 위해서 기존 Markov Chain 모형과 비교 하였으며 서울관측소 및 전주관측소를 대상으로 연구를 진행하였다. 계절강수량 및 일강수량 등 다양한 시간규모에서 모형의 적합성을 평가하기 위해서 천이확률, 평균, 분산, 왜곡도 및 첨예도 등을 비교하였으며 HMM 모형이 기존 Markov Chain 모형에 비해서 개선된 모의능력을 확인할 수 있었다. 특히, HMM 모형은 극치강수량을 재현하는데 있어서 기존 Markov Chain 모형에 비해서 월등한 모의능력을 보여주었다. 이러한 점에서 장기유출량 및 확률홍수량 등을 산정하기 위한 입력자료로 활용이 충분히 가능할 것으로 판단된다.

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

FMI기반 co-simulation에서 step size control을 위한 Markov chain을 사용한 예측 방법 (A Prediction Method using Markov chain for Step Size Control in FMI based Co-simulation)

  • 홍석준;임덕선;김원태;조인휘
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1430-1439
    • /
    • 2019
  • FMI를 기반으로 하는 co-simulation의 마스터 알고리즘(MA)에서 시뮬레이션 결과의 정확도를 높이는 방법으로 zero crossing 포인트를 찾기 위한 Bisectional algorithm을 사용할 수 있다. 그러나 이 알고리즘은 많은 Rollback을 야기한다. 따라서 본 논문에서는 제안하는 MA는 Bisection algorithm을 통해 zero crossing 포인트를 검출하면서도 반복되는 구간 그래프를 분석하여 그 값을 Markov chain을 적용하여 다음 구간을 예측하여 이를 step size에 적용한다. 시뮬레이션에서 실제 Rollback이 발생했을 때 그래프 형태별로 변화되는 step size를 배열로 저장하고, 이룰 다음 예측 구간에 적용함으로서 Rollback을 최소화하는 알고리즘을 제안한다. 시뮬레이션 결과를 통해 제안하는 알고리즘이 기존 알고리즘에 비해 최대 20% 이상의 시뮬레이션 시간이 감소되는 것을 확인하였다.

마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석 (Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling)

  • 박원석;옥승용
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

강우 빈도와 마코프 연쇄의 상태모형에 의한 일 강우량 모의 (Daily Rainfall Simulation by Rainfall Frequency and State Model of Markov Chain)

  • 정영훈;김병식;김형수;심명필
    • 한국습지학회지
    • /
    • 제5권2호
    • /
    • pp.1-13
    • /
    • 2003
  • In Korea, most of the rainfalls have been concentrated in the flood season and the flood study has received more attention than low flow analysis. One of the reasons that the analysis of low flows has less attention is the lacks of the required data like daily rainfall and so we have used the stochastic processes such as pulse noise, exponential distribution, and state model of Markov chain for the rainfall simulation in short term such as daily. Especially this study will pay attention to the state model of Markov chain. The previous study had performed the simulation study by the state model without considerations of the flood and non-flood periods and without consideration of the frequency of rainfall for the period of a state. Therefore this study considers afore mentioned two cases and compares the results with the known state model. As the results, the RMSEs of the suggested and known models represent the similar results. However, the PRE(relative percentage error) shows the suggested model is better results.

  • PDF

DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법 (Prediction method of node movement using Markov Chain in DTN)

  • 전일규;이강환
    • 한국정보통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.1013-1019
    • /
    • 2016
  • 본 논문에서는 Delay Tolerant Network(DTN)에서 Markov chain으로 노드의 속성 정보를 분석하여 노드의 이동경로를 예측하는 알고리즘을 제안한다. 기존 DTN에서의 예측기반 라우팅 기법은 노드가 미리 정해진 스케줄에 따라 이동하게 된다. 이러한 네트워크에서는 스케줄을 예측할 수 없는 환경에서 노드의 신뢰성이 낮아지는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 노드의 속성 정보를 Markov chain을 적용하고 일정 구간에서 시간에 따른 노드의 이동 경로를 예측하는 CMCP(Context-awareness Markov-Chain Prediction)알고리즘을 제안한다. 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속력과 방향성을 근사한 후 Markov chain을 이용하여 제한된 주기와 버퍼의 범위에서 확률전이 매트릭스를 생성하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 메시지 전송 지연 시간이 감소하고 전송률이 증가함 보여주고 있다.

Stochastic simulation based on copula model for intermittent monthly streamflows in arid regions

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.488-488
    • /
    • 2015
  • Intermittent streamflow is common phenomenon in arid and semi-arid regions. To manage water resources of intermittent streamflows, stochactic simulation data is essential; however the seasonally stochastic modeling for intermittent streamflow is a difficult task. In this study, using the periodic Markov chain model, we simulate intermittent monthly streamflow for occurrence and the periodic gamma autoregressive and copula models for amount. The copula models were tested in a previous study for the simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data; however, the copula models have never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system in the present study. A few drawbacks of the PGAR model were identified, such as significant underestimation of minimum values on an aggregated yearly time scale and restrictions of the parameter boundaries. Conversely, the copula models do not present such drawbacks but show feasible reproduction of key and operational statistics. We concluded that the periodic Markov chain based the copula models is a practicable method to simulate intermittent monthly streamflow time series.

  • PDF

이중 지수 점프확산 모형하에서의 마코브 체인을 이용한 아메리칸 옵션 가격 측정 (Valuation of American Option Prices Under the Double Exponential Jump Diffusion Model with a Markov Chain Approximation)

  • 한규식
    • 대한산업공학회지
    • /
    • 제38권4호
    • /
    • pp.249-253
    • /
    • 2012
  • This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).

Valuation of European and American Option Prices Under the Levy Processes with a Markov Chain Approximation

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.37-42
    • /
    • 2013
  • This paper suggests a numerical method for valuation of European and American options under the two L$\acute{e}$vy Processes, Normal Inverse Gaussian Model and the Variance Gamma model. The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the existing numerical method, the lattice-based method.

불연속 Kernel-Pareto 분포를 이용한 일강수량 모의 기법 개발 (Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution)

  • 권현한;소병진
    • 대한토목학회논문집
    • /
    • 제31권3B호
    • /
    • pp.277-284
    • /
    • 2011
  • 기존 Markov Chain 모형을 통한 일강수량 모의에서 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단된다. 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인할 수 있었다.