Customization and personalization services are considered as a critical success factor to be a successful Internet store or web service provider. As a representative personalization technique, personalized recommendation techniques are studied and commercialized to suggest products or services to a customer of Internet storefronts based on demographics of the customer or based on an analysis of the past purchasing behavior of the customer. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customers data. however, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed knowledge base. In this paper, we proposed a marketing rule extraction technique for personalized recommendation on Internet storefronts using market basket analysis technique, a well-known data mining technique. Using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store. An experiment has been performed to evaluate the effectiveness of proposed approach comparing with preference scoring approach and random selection.
본고(本稿)는 원화환율(貨換率)의 적정운용(適正運用)을 모색해 보았다. 이를 위해 먼저 Lipschitz(1980)의 방식을 따라 원화(貨)의 실질실효환율(實質實效換率)을 안정시킬 수 있는 적정통화(適正通貨)"바스켓"을 구성해 보았다. 80년대 중반 이후 이를 적용했을 경우 실제의 경우보다 원화(貨)의 실질실효환율(實質實效換率)이 훨씬 안정될 수 있었음이 입증되었다. 또한 특정시점에서 구한 적정가중치(適正加重値)를 계속해서 적용하는 것보다 주요환율(主要換率)과 상대물가간(相對物價間)의 관계변화(關係變化)에 따라 가중치(加重値)를 수정해 나가는 것이 바람직하다는 점도 지적되었다. 이와 같은 적정통화(適正通貨)"바스켓"과 그에 기초한 "바스켓"환율(換率)은 우리의 경상수지(經常收支)나 생산성(生産性) 변화추이(變化推移)와 함께 시장평균환율제도하(市場平均換率制度下)에서 적절한 환율운용(換率運用)을 위한 중장기적(中長期的) 지표(指標)의 하나가 될 수 있을 것이다.
Recent interests in data mining result from the expansion of the amount of business data and the growing business needs for extracting valuable knowledge from the data and then utilizing it for decision making process. In particular, recent advances in association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from the voluminous transactional data. Certainly, one of the major purposes of association rule mining is to utilize acquired knowledge in providing marketing strategies such as cross-selling, sales promotion, and shelf-space allocation. In spite of the potential applicability of association rule mining, unfortunately, it is not often the case that the marketing mix acquired from data mining leads to the realized profit. The main difficulty of mining-based profit realization can be found in the fact that tremendous numbers of patterns are discovered by the association rule mining. Due to the many patterns, data mining experts should perform additional mining of the results of initial mining in order to extract only actionable and profitable knowledge, which exhausts much time and costs. In the literature, a number of interestingness measures have been devised for estimating discovered patterns. Most of the measures can be directly calculated from what is known as a contingency table, which summarizes the sales frequencies of exclusive items or itemsets. A contingency table can provide brief insights into the relationship between two or more itemsets of concern. However, it is important to note that some useful information concerning sales transactions may be lost when a contingency table is constructed. For instance, information regarding the size of each market basket(i.e., the number of items in each transaction) cannot be described in a contingency table. It is natural that a larger basket has a tendency to consist of more sales patterns. Therefore, if two itemsets are sold together in a very large basket, it can be expected that the basket contains two or more patterns and that the two itemsets belong to mutually different patterns. Therefore, we should classify frequent itemset into two categories, inter-pattern co-occurrence and intra-pattern co-occurrence, and investigate the effect of the market basket size on the two categories. This notion implies that any interestingness measures for association rules should consider not only the total frequency of target itemsets but also the size of each basket. There have been many attempts on analyzing various interestingness measures in the literature. Most of them have conducted qualitative comparison among various measures. The studies proposed desirable properties of interestingness measures and then surveyed how many properties are obeyed by each measure. However, relatively few attentions have been made on evaluating how well the patterns discovered by each measure are regarded to be valuable in the real world. In this paper, attempts are made to propose two notions regarding association rule measures. First, a quantitative criterion for estimating accuracy of association rule measures is presented. According to this criterion, a measure can be considered to be accurate if it assigns high scores to meaningful patterns that actually exist and low scores to arbitrary patterns that co-occur by coincidence. Next, complementary measures are presented to improve the accuracy of traditional association rule measures. By adopting the factor of market basket size, the devised measures attempt to discriminate the co-occurrence of itemsets in a small basket from another co-occurrence in a large basket. Intensive computer simulations under various workloads were performed in order to analyze the accuracy of various interestingness measures including traditional measures and the proposed measures.
물류와 유통에서 장바구니 분석(MBA: Market Basket Analysis)은 주요 판매 상품 간의 연관성을 분석하고, 내부 운영 효율성을 높이기 위한 중요한 수단으로 활용된다. 특히, 장바구니 분석의 결과는 상품 구매예측, 상품 추천 및 매장의 상품 전시 구조 등 의사결정 과정에 중요한 참고자료로 활용된다. 최근 전자상거래의 발전으로 하나의 유통 및 물류 기업이 취급하는 품목의 수가 급격하게 증가하면서 기존의 분석기법인 Apriori와 FP-Grwoth 등의 방법은 계산량의 기하급수적 증가로 인한 속도저하와 실제 비즈니스에 적용하기 위한 중요한 연관규칙을 살피기에는 한계가 있다. 본 연구에서는 이러한 한계를 극복하기 위해, 상품의 최상위 분류체계인 Main-Category 수준에서는 상품의 판매량을 함께 고려할 수 있는 utility item set mining 기법을 활용하여 주로 함께 판매된 상품군을 우선 선별하였다. 그 후, sub-category 수준에서는 FP-Growth를 활용하여 함께 판매되는 상품 유형을 식별하였다. 이렇게 순차적 레이어 필터링 기법을 활용하여 불필요한 연산을 줄일 수 있어 현실적으로 활용가능한 결과를 제시할 수 있다.
연관규칙 마이닝은 물품들 간의 동시 구매 패턴 파악에 사용되는 대표적 마이닝 기법 중 하나로, 카탈로그 설계, 교차판매, 매장배치 등 다양한 마케팅 전략 수립에 활용된다. 방대한 데이터로부터 도출된 많은 연관규칙 중 수익성이 있는 규칙만을 식별해 내는 작업은 지나치게 많은 시간 및 비용을 필요로 한다. 따라서 연관규칙들의 흥미성 평가 과정을 신속하고 체계적으로 수행하기 위해 다양한 흥미성 척도들이 고안되어 왔다. 하지만 신뢰도와 지지도를 비롯한 대다수의 척도들은 대상 물품들의 발생 빈도수에만 근거하여 도출되므로, 실제 판매 현상을 정확하게 반영하지 못한다는 한계를 갖는다. 예를 들어, 기존의 척도는 매우 큰 장바구니에서 동시 구매된 한 건의 거래와 작은 크기의 장바구니에서 동시 구매된 한 건의 거래를 동일한 빈도로 측정한다. 그런데 매우 큰 장바구니에서는 서로 연관관계가 없는 물품들이 우연히 동시에 존재할 가능성이 크므로, 이에 대한 보정이 이루어지는 것이 타당하다. 기존의 척도들과 달리, 본 논문에서는 장바구니 크기 효과를 반영한 흥미성 척도를 새롭게 소개한다. 제안하는 척도는 큰 바구니에서 발생한 패턴과 작은 바구니에서 발생한 패턴에 대해 상이한 가중치를 부여하는 방식으로 계산됨으로써, 우연히 발생한 패턴으로 인해 결과가 왜곡되는 현상을 최소화할 수 있을 것으로 기대된다. 또한, 시뮬레이션 데이터 및 실 데이터에 대한 실험을 통해 제안하는 척도와 기존 척도가 다양한 환경 하에서 보이는 정확성과 일관성을 분석하고 그 결과를 제시하였다.
It is most important for distribution center in retail business to delivery commodities in a timely manner. Accordingly, many companies try to make distribution center effective using the Warehouse Management System(WMS) integrated legacy system. Also, the Customer Relationship Management(CRM) is the most typical paradigm in management lately. Even though the WMS and CRM are independent system of each other, WMS, coupled with CRM makes customer satisfied more effectively. In this paper, we proposed the methodology for inventory location after analyzing and applying customer buying pattern data in the CRM through the MBA(Market Basket Analysis), which is part of data mining. We used an example modeling a real distribution center in retail through a 3D simulation tool and examined correlation between commodities using customer buying pattern. After that, we applied it to the inventory location system through the MBA in an example. Finally, we identified decrease in the time for picking, which is the majority of distribution center. Besides, we proposed a simulation methodology before applying new methodology. Consequently, it removes potential errors in advance and makes a optimized inventory location system.
원투원 마케팅(데이터베이스 마케팅 또는 관계 마케팅)은 컴퓨터의 발전과 더불어 기업 및 고객에게 이익을 가져올 것이며, 또한 고객의 세일 및 광고에 변화를 가져올 여러 분야 중의 하나이다. 인터넷 쇼핑몰에서 지능적인 고객 서비스의 일환으로, 본 논문에서는 데이터 마이닝 기법으로 잘 알려진 장바구니 분석을 이용한 개인화 된 광고를 제공하는 기법을 제시하고자 한다. 추천 기법의 핵심적인 이론으로 통계학, 데이터 마이닝, 인공 지능, 규칙 기반 매칭 등이 있다. 개인화 된 추천을 위한 규칙 기반 관점에서, 개인화를 위한 마케팅 규칙은 일반적으로 마케팅 전문가로부터 추출되어 고객의 데이터를 갖고 추정한다. 그러나 마케팅 전문가로부터 규칙을 추출하기란 매우 어려울 뿐만 아니라, 작성된 지식 기반 규칙을 검증하고 유지하기도 어렵다. 본 논문에서는 장바구니 분석 기법을 이용하여, 크로스 세일 마케팅 규칙을 추출한 뒤, 고객이 인터넷 쇼핑몰에 방문했을 때 개인화 된 광고를 제공하는데 초점을 두기로 한다.
본 연구는 노인층 생계비에 관해 충분한 연구가 이루어져 있지 못한 상황에서 여러 생계비 측정방식중 반물량방식과 통계분석방식을 적용하여 노인 가계를 위한 생계비 측정방식의 다양화를 제안하는데 초점을 맞추고 있다. 따라서 생계비산정방식을 반물량방식과 통계분석방식을 통해 산정하였으며 이를 다른 연구와 비교함으로써 앞으로 생계비 산정방식의 다양화를 제안하였다. 본 연구를 통해 밝혀진 결과를 요약하면 다음과 같다. 첫째 반물량 방식에 의한 2006년 노인부부가계의 최저생계비는 566,478원이고 노인독신가계 중 남자는 306,210원, 여자는 260,276원으로 나타났다. 둘째, 통계분석방식에 의하면 노인부부가계의 경우 생계비 1방식에서는 최저생계비가 860,043원, 표준생계비 1,018,669원, 유락생계비 1,287,555원으로 나타났다. 그리고 생계비 2방식에서는 694,916원, 표준생계비 1,037,779원, 유락생계비 1,556,551원으로 나타났다. 이는 모두 귀속임대료를 포함시킨 것이지만 귀속임대료를 제외한 생계비는 최저생계비 435,416원, 표준생계비 548,250원, 유락생계비 699,844원으로 나타났다. 여기에서 반물량방식의 최저생계비는 유사 상대 표준선의 최저생계비와 귀속임대료를 제외한 최저생계비 사이인 것으로 나타났다. 셋째, 산정된 노인생계비를 정부 공식 생계비와 정영숙의 생계비 산정방식과 비교한 결과 주거비를 포함할 경우 생계비1방식에 의해서는 전반적으로 낮게 나타났으며, 주거비를 제외할 경우에 비해서는 모두 높게 나타났다. 또한 생계비 2방식에 의한 최저생계비와는 유사하게 나타났다. 그러나 본 연구를 통해 여러 방식의 생계비 산정을 시도하였지만 산정된 생계비 결과가 아직까지 일관성이 있다고 판단하기는 어려웠다. 이는 노인을 대상으로 한 절대적 생계비 산정방식인 전물량방식의 생계비 산정이 아주 필요하다는 점을 나타낸 결과라 하겠다. 이에 절대적 산정방식, 특히 전물량방식의 생계비 산정이 이루어지기 전에 다른 생계비 산정 결과에 대한 해석이 제한되기 때문에 좀 더 다양한 방식의 산정방식을 활용하여 체계적이고 종합적인 노인 생계비가 산정되고 제안되어야 할 것으로 사료되었다.
오프라인 쇼핑몰에 비해 온라인 쇼핑몰은 빠르게 접근이 가능하기 때문에 처음 구매의사를 생성하고 실제 구매가 이루어지기까지의 기간이 오프라인 쇼핑몰에 비해 매우 짧게 나타난다. 즉 오프라인 쇼핑몰의 경우 구매 희망물건을 바로 구매하기 보다는 몇 개의 물건들을 모두 모아서 구매하는 행태가 일반적이다. 하지만, 인터넷 쇼핑몰의 경우 단 하나의 물품만을 포함하고 있는 주문이 전체 주문의 절반이상을 차지한다. 이러한 차이는 온라인 쇼핑몰 거래데이터의 분석을 위해서는 데이터 마이닝 분석에서 사용되어 온 장바구니의 정의에 대한 확장이 필요함을 의미한다. 하지만 현재까지 온라인 데이터를 대상으로 한 장바구니 분석 연구는, 장바구니의 기준 즉 동시구매의 기준에 대한 명확한 근거나 합의 없이 연구자의 선택에 따라 서로 다른 기준으로 수행되어왔다. 따라서 본 연구에서는 온라인 쇼핑몰 분석에 적용되는 동시에 구매되는 물건들에 대한 기준을 고찰해보고 연구모형을 마련하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.