• Title/Summary/Keyword: Marker selection

Search Result 511, Processing Time 0.027 seconds

A Dual Selection Marker Transformation System Using Agrobacterium tumefaciens for the Industrial Aspergillus oryzae 3.042

  • Sun, Yunlong;Niu, Yali;He, Bin;Ma, Long;Li, Ganghua;Tran, Van-Tuan;Zeng, Bin;Hu, Zhihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.230-234
    • /
    • 2019
  • Currently, the genetic modification of Aspergillus oryzae is mainly dependent on protoplast-mediated transformation (PMT). In this study, we established a dual selection marker system in an industrial A. oryzae 3.042 strain by using Agrobacterium tumefaciens-mediated transformation (ATMT). We first constructed a uridine/uracil auxotrophic A. oryzae 3.042 strain and a pyrithiamine (PT)-resistance binary vector. Then, we established the ATMT system by using uridine/uracil auxotrophy and PT-resistance genes as selection markers. Finally, a dual selection marker ATMT system was developed. This study demonstrates a useful dual selection marker transformation system for genetic manipulations of A. oryzae 3.042.

Marker-Assisted Selection for Monoecy in Chamoe (Cucumis melo L.) (성발현 연관 분자마커를 이용한 단성화 참외 선발)

  • Bang, Sun-Woong;Song, Kihwan;Sim, Sung Chur;Chung, Sang Min
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • The DNA marker T1ex, originally developed from melon (Cucumis melo L.) for monoecy, was employed in chamoe, which is referred to as oriental melon. This marker shows size variations in monoecious melon. However, in chamoe, no such detrimental size variation was found in monoecious chamoe, and 99% association between flower phenotypes and genotypes of the T1ex marker was observed in 106 lines of chamoe. To evaluate the efficacy of the T1ex marker for marker-assisted selection (MAS), a total of 240 plants of chamoe breeding lines were screened using the T1ex marker. Among these, 98 varieties were selected. Although the T1ex marker might not be useful for MAS in melon, we found 100% concordance between genotypes and phenotypes for sex expression in chamoe. These results suggest that the T1ex marker will be a useful resource for MAS for monoecy in chamoe.

Molecular Mapping of Resistant Genes to Brown Planthopper, Bphl and bph2, in Rice

  • Cha, Young-Soon;Cho, Yong-Gu;Shin, Kyeong-Og;Yeo, Un-Sang;Choi, Jae-Eul;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • This study was carried out to map Bphl and bph2 gene in Mudgo and Sangju13 (Oryza sativa L.) respectively conferring resistance to brown plan-thopper (BPH) and to establish the marker-assisted selection (MAS) system. Bulked seedling (grown for 20 days) test was conducted with the 73 F4 lines derived from a cross between Nagdongbyeo and Mudgo for Bphl and with 53 BC3F5 lines derived from the Milyang95/Sangju13 cross for bph2. Bph1 was mapped between RG413 and RG901 on chromo-some 12 at a distance of 7.5 cM from RG413 and 8.4 cM from RG90l. A recessive gene bph2 was located near RZ76 on chromosome 12 at a distance of 14.4 cM. Bphl and bph2 were linked to each other with a distance of about 30 cM. An RFLP marker, RG413 linked to Bphl, was converted to an STS marker to facilitate the marker-assisted selection. BPH resistant genotypes could be selected with 92% accuracy in a population derived from a line of NM47-B-B.

  • PDF

Development of a CMS-specific marker based on chloroplast-derived mitochondrial sequence in pepper

  • Jo, Yeong Deuk;Jeong, Hee-Jin;Kang, Byoung-Cheorl
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Molecular markers developed from the flanking sequences of two cytoplasmic male sterility (CMS)-associated genes, orf456 and ${\Psi}atp6-2$, have been used for marker-assisted selection of CMS in pepper. However, in practice, the presence of orf456 and ${\Psi}atp6-2$ at substoichiometric levels even in maintainer lines hampers reliable selection of plants containing the CMS gene. In this study, we developed a novel CMS-specific molecular marker, accD-U, for reliable determination of CMS lines in pepper, and used the newly and previously developed markers to determine the cytoplasm types of pepper breeding lines and germplasms. This marker was developed from a deletion in a chloroplast-derived sequence in the mitochondrial genome of a CMS pepper line. CMS pepper lines could be unambiguously determined by presence or absence of the accD-U marker band. Application of orf456, ${\Psi}atp6-2$and accD-U to various pepper breeding lines and germplasms revealed that accD-U is the most reliable CMS selection marker. A wide distribution of orf456, but not ${\Psi}atp6-2$, in germplasms suggests that the pepper cytoplasm containing both orf456 and ${\Psi}atp6-2$ has been selected as CMS cytoplasm from cytoplasm containing only orf456. Furthermore, factors other than orf456 may be required for the regulation of male sterility in pepper.

Evaluation of QTL Related SSR Marker Universality in Korean Rice Breeding Populations

  • Song, Moon-Tae;Lee, Jeom-Ho;Lee, Sang-Bok;Ku, Ja-Hwan;Cho, Youn-Sang;Song, Myung-Hee;Park, Sung-Ho;Hwang, Hung-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.56-64
    • /
    • 2003
  • If a quantitative trait loci (QTL) marker identified in a population is applicable to different populations (marker universality), this will not only reduce the labor and cost in marker assisted selection (MAS), but accelerate the application of molecular markers to real breeding programs. Present study aims to evaluate the defined QTL related markers from a population to a different breeding population for the MAS. Four rice breeding populations were subjected to seventy-five simple sequence repeat (SSR) markers which were already identified for their polymorphism information content (PIC) in the parents of the crossings. Among them, eight markers were evaluated for their correlation between presence of marker alleles and phenotypic expression in breeding populations. A reasonable level of polymorphism for the mapped markers originated from any sources of rice accessions was observed between crosses of any sources (marker repeatability). However, correlation between presence of markers and expression of the traits in rice breeding populations was not significant except for minor portion of traits and markers examined (failure of marker universality). In the present study, various strategies were discussed to develop new markers with universality of breeding application.

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Current Status of Quantitative Trait Locus Mapping in Livestock Species - Review -

  • Kim, Jong-Joo;Park, Young I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.587-596
    • /
    • 2001
  • In the last decade, rapid developments in molecular biotechnology and of genomic tools have enabled the creation of dense linkage maps across whole genomes of human, plant and animals. Successful development and implementation of interval mapping methodologies have allowed detection of the quantitative trait loci (QTL) responsible for economically important traits in experimental and commercial livestock populations. The candidate gene approach can be used in any general population with the availability of a large resource of candidate genes from the human or rodent genomes using comparative maps, and the validated candidate genes can be directly applied to commercial breeds. For the QTL detected from primary genome scans, two incipient fine mapping approaches are applied by generating new recombinants over several generations or utilizing historical recombinants with identity-by-descent (IBD) and linkage disequilibrium (LD) mapping. The high resolution definition of QTL position from fine mapping will allow the more efficient implementation of breeding programs such as marker-assisted selection (MAS) or marker-assisted introgression (MAI), and will provide a route toward cloning the QTL.

Expression of Ethionine Resistance Conferring Gene in an Industrial Strain of Saccharomyces cerevisiae (산업용 Saccharomyces cerevisiae에서 Ethionine 저항성 유전자의 발현)

  • Park, Jeong-Nam;Lee, Gyeong-Hui;Go, Hyeon-Mi;Seo, Guk-Heon;Jin, Jong-Eon;Lee, Hwang-Hui;Bae, Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.356-361
    • /
    • 2004
  • The ethionine resisconferring gene (ERCI) was constitutively expressed under the control of the alcohol dehydrogenase gene promoter (ADClp) and introduced into the chromosomes of an industrial polyploid strain of Saccharocerevisiae by using the 8-sequences of the Tyl retrotransposon as the recombination site. 8-Integrative cassette devoid of bacterial DNA sequences containing the ampicillin resistance gene was constructed that had the aureobasidin A resistance gene (AURl-C) as the selection marker and ERCl gene. The ERCl gene was also employed as the selection marker in the 8-integrative cassette lacking the A URl-C gene. Industrial Saccerevisiae transformed with these integrative cassettes exhibited strong resistance to DL-ethioncompared with nontransformants.

RAPD marker를 이용한 참돔 집단의 유전적 특성 분석

  • 장요순;노충환;홍경표;명정구;김종만
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-34
    • /
    • 2003
  • 한국산 선발계통 및 일본산 양식계통과 이들 두 계통간 잡종 참돔 집단의 유전적 특성을 분석하기 위하여, RAPD (Random Amplified Polymorphic DNA) marker를 탐색하였다. 10개의 염기로 이루어진 200개의 random primer 분석을 통하여 polymorphic pattern을 나타내는 23개의 random primer를 선발하였으며, 각 primer의 재현성을 확인하였다. 이들 중 OPA-11 primer는 크기가 각각 600 bp, 650 bp 및 750 bp 인 3개의 DNA 단편에 의하여 4개의 genotype을 나타냈으며, 각 genotype의 빈도는 집단간차이를 보였고, 한국산 선발계통 집단에서는 4개의 genotype이 모두 발견되는 반면, 일본산 양식계통 및 일본산 양식계통을 포함한 교배집단에서는 특정 genotype만 발견되었다. OPA-11 primer 유래의 polymorphic DNA 단편을 cloning하고 염기서열을 결정하였으며, SCAR (Sequence Characterized Amplified Region) primer를 제작하고 분석하였다. 본 연구는 참돔집단의 유전적 특성 파악 및 집단 구별에 RAPD marker를 활용하였으며, 참돔 육종시 형질 및 기능관련 DNA marker 탐색에 적용하기 위하여, 이후의 연구에서는 SCAR과 RFLP 분석에 RAPD marker를 이용하여 100% 정확도를 갖는 RFLP maker를 찾고, MAS (Marker-Assisted Selection)에 적용하고자 한다.

  • PDF