• Title/Summary/Keyword: Mariner class vessel

Search Result 3, Processing Time 0.018 seconds

GA-LADRC based control for course keeping applied to a mariner class vessel (GA-LADRC를 이용한 Mariner class vessel의 선수각 제어)

  • Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.145-154
    • /
    • 2023
  • In this study, to control the heading angle of a ship, which is constantly subjected to various internal and external disturbances during the voyage, an LADRC (linear active disturbance rejection control) design that focuses more on improving the disturbance removal performance was proposed. The speed rate of change of the ship's heading angle due to the turn of the rudder angle was selected as a significant factor, and the nonlinear model of the ship's maneuvering equation, including the steering gear, was treated as a total disturbance. It is the similar process with an LADRC design for the first-order transfer function model. At this time, the gains of the controller included in LADRC and the gains of the extended state observer were tuned to RCGAs (real-coded genetic algorithms) to minimize the integral time-weighted absolute error as an evaluation function. The simulation was performed by applying the proposed GA-LADRC controller to the heading angle control of the Mariner class vessel. In particular, it was confirmed that the proposed controller satisfactorily maintains and follows the set course even when the disturbances such as nonlinearity, modelling error, uncertainty and noise of the measurement sensor are considered.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

A Study on the Effects of High-lift Rudder on Ship's Maneuverability (고 양력 타가 선박의 조종성능에 미치는 영향에 관한 연구)

  • Kim, Sang-Hyun;Kim, Hyun-Jun;Jun, Hee-Chul;Yoon, Seung-Bae;Park, Hwa-Pyeong;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.393-399
    • /
    • 2010
  • Recently, a vessel's maneuvering performance is considered to be an important subject as marine pollution from the ships that stranded on a rock becomes more severe. So, IMO(International maritime organization) has adopted Resolution MSC.l37 to enhance international standards of ship's maneuverability. There's more than one way to improve ship's maneuverability. This research focused on improving ship's maneuverability by high-lift rudder. To predict the maneuverability, the numerical simulation model was used. The evaluation of maneuverability was carried out by turning test and zig-zag test. The results obtained with these simulation showed that the high-lift rudder would be effective in improving the turning ability of the ship. But it was clarified that there Has a possibility that course changing ability night become bad through an increase of rudder lift.