• Title/Summary/Keyword: Marine weather report

Search Result 7, Processing Time 0.01 seconds

Improvement of the Media Coverage for Marine Crime Prevention (해양범죄예방을 위한 언론보도의 개선방안)

  • Roh, Ho-Rae;Lim, Seok-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.2
    • /
    • pp.448-457
    • /
    • 2013
  • The media is an effective means of preventing crime. It can be known to members of the media presiding over the most widely and rapidly. Because of this, the mass media is a good way to prevent such crime. Related to general crime, marine crime will have unique characteristics and about Crimes reported by the media, it is also true. The results of this study are as follows. Firstly, it is required that the more accurate present article must be published and reported. Secondly, for more accurate presentation of measure, there is a need to enhance professional training for reporters. Thirdly, the marine weather report is the most important political purpose of considering marine crime prevention. Forthly, marine crime is likely to be a lack of evidence. Therefore, in order to supplement the lack of evidence maritime security agency should be utilized for a news source.qualification Fifthly, the need for regular inspection of the articles is requested. Sixthly, for judicial control maintenance of the media related laws should be strengthened. Finally, the arbitration institution for media rights should be established under the Korea Ministry of Land Infrastructure and Transport. This is practical action for marine crime prevention.

A Study on Seasonal Variation in Marine Traffic Congestion on Major Port and Coastal Routes (주요 항만 및 연안항로의 계절별 해상교통혼잡도 변화에 관한 연구)

  • Kang, Won-Sik;Song, Tae-Han;Kim, Young-Du;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, a congestion assessment was conducted to verify seasonal differences in congestion for major coastal traffic routes and fairways in major ports with GICOMS Data for 7 days without issuing a special weather report. As a result, a maximum of 11 % and 82 % are shown, with an average of 3.5 % and a 30 % seasonal difference for hourly average congestion and peak time congestion. Therefore, seasonal differences for the target area should be taken into consideration to perform further congestion assessments, particularly for maritime traffic safety assessments, and keen attention should be given to setting up safety measures against congestion.

A Discussion on Container Loss Accidents and Responses During Ship Voyage (선박 운항 중 컨테이너 해상유실 사고 및 대응에 관한 고찰)

  • Hwang, Daejung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • In 2021, the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), a U.N. advisory research institute, cited container loss as one of six sources of marine litters in shipping. The sinking of the X-P ress Pearl in May 2021 caused a catastrophic environmental pollution accident in which the loaded containers were moved to the shore, and the plastic pellets were loaded inside covered the coast of Sri Lanka. With this history, the International Maritime Organization (IMO) will discuss prevention and follow-up measures for container loss during ship voyages, as an agenda at the 8th Sub Committee on Carriage of Cargoes and Containers meeting in September 2022. To establish Korea's response direction at the IMO meeting, this study identified major causes of container loss accidents, and considered the response through analysis based on the accident investigation report and related professional data. As a result, it was found that the major cause of container loss during voyages was the enlargement of container ships, bad weather, and poor loading of containers. In particular, the need to prepare countermeasures for the deterioration of the operational safety of large container ships due to bad weather was identified. Additionally, integrated monitoring of the implementation of international conventions is required, for the safe sea transportation of container cargo. In particular, in terms of preservation of the marine environment, it is necessary to supplement the system for the recovery of lost containers. Finally, it was found that it is necessary to establish systems that can complement each other in the shipbuilding and shipping industries, in terms of shipbuilding as well as ship operation, to fundamentally prevent container loss accidents at sea. It is judged that it is difficult to resolve the various factors of container loss at sea during voyages, by responding from an individual perspective.

Mean Heat Flux at the Port of Yeosu (여수항의 평균 열플럭스)

  • Choi Yong-Kyu;Yang Jun-Hyuk
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.653-657
    • /
    • 2006
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) (1995-2004), mean heat fluxes were estimated at the port of Yeosu. Net heat flux was transported from the air to the sea surface during February to September, and it amounts to $205 Wm^{-2}$ in daily average value in May. During October to January, the transfer of net heat flux was conversed from the sea surface to the air with $-70 Wm^{-2}$ in minimum of daily average value in December. Short wave radiation was ranged from $167 Wm^{-2}$ in December to $300 Wm^{-2}$ in April. Long wave radiation (Sensible heat) was ranged from $27 (-14) Wm^{-2}$ in July to $90 (79) Wm^{-2}$ in December. Latent heat showed $42 Wm^{-2}$ with its minimum in July and $104 Wm^{-2}$ with its maximum in October in daily average value.

A Study about Analysis of Cause of several Capsized Sea Accidents by Rolling Motion Spectrum (Rolling Motion Spectrum 에 의한 해난 발생의 원인분석에 관한 연구)

  • 윤점동;이동섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.23-36
    • /
    • 1989
  • Marine casualities in the high sea are mainly classified into the breakage of hull and capsize , of which the latter occurs frequently to a small craft and container vessels by extreme rolling. The aim of this study is to develop shiphandling techniques for the prevention of ship's large rolling by way of evaluating dangerous degree of rolling in heavy weather. In this study, rolling motion is analized by using statistical method as follow : (1) 8 sample ships is presented for calculation. (2) Analized sea state are Beaufort scale 7 and 10 (wind velocity 30kts and 50kts respectively) and significant wave height is put as 5.2m and 11.2m. (3) The formula recommended by International Towing Tank Conference (ITTC) is used to calculated the wave spectrum. The results of this study are as follow : The results of this study are as follow : (1) Most of the vessels with beam of 20 meters or less was found to be capized in the waves abeam under the sea condition of Bearfort scale7(30kts). (2) For the vessels range 20m to 30m was found safe under the sea conditions of Bearfort scale 7(30kts) and imminent danger under the sea condition of Beaufort scale 11(50kts). (3) It is proved that any vessel could be capsized by heavy rolling regardless of vessel's size whenever the motion is synchronized with waves abeam. This study concludes that the navigator, especially at night , must anticipate the exact wave direction, referring to the wether report and coastaline, not to lay the vessel in the serial wave abeam.

  • PDF

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.