• Title/Summary/Keyword: Marine slender structure

Search Result 16, Processing Time 0.025 seconds

First Record of an Abnormal Bathyraja brachyurops (Rajiformes: Arhynchobatidae) Collected from the Southwest Atlantic Ocean (남서대서양에서 채집된 Bathyraja brachyurops (Rajiformes: Arhynchobatidae) 기형의 첫 보고)

  • Min-Gyoon Park;Eunjung Kim;Jin-Koo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.916-922
    • /
    • 2023
  • An abnormal shape of Bathyraja brachyurops was first reported from the catch of a bottom trawl in the southwest Atlantic Ocean in June 2022. Both pectoral fins of the specimen did not fuse with the head, resulting in a horn-like structure separated from the sides of the eyes. Analysis of mitochondrial DNA cytochrome c oxidase subunit I sequences showed that our specimen was perfectly matched to Bathyraja brachyurops registered with the National Center for Biotechnology Information. Our specimen possessed the following morphological features: a pair of flexible but elongated and pointed horns on the head; rough dorsal disc, densely covered with numerous small denticles on the head, anterior margin of pectoral fins and median line of the disc; a thorn between the first and second dorsal fins; and a pair of large ocelli at the base of pectoral fins. Unlike the normal B. brachyurops, our specimen had a slender clasper and no nuchal thorns, which may be related to the morphological abnormality. The horn-like structure on the head may be owing to the lack of fusion between the pectoral fins and head during early embryonic development.

Genetic Variation and Population Structure of the Slender Bitterling Acheilognathus lanceolatus of Korea and Japan as Assessed by Amplified Fragment Length Polymorphism (AFLP) Analysis (AFLP 분석에 의한 한국과 일본의 납자루 Acheilognathus lanceolatus의 유전 변이와 집단 구조)

  • Yun, Young-Eun;Kim, Chi-Hong;Kim, Keun-Yong;Ishinabe, Toshihiro;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Genetic variation and population structure of the slender bitterling Acheilognathus lanceolatus of Korea (the Han, Geum, Dongjin, Seomjin and Nakdong Rivers) and Japan (the Katsura River) were assessed by amplified fragment length polymorphism (AFLP) analysis. Five combinations of selective primers generated 345~374 DNA fragments, of which 55~131 were polymorphic. The Nakdong River population had the highest genetic diversity and the Han River population had the lowest genetic diversity. Dendrogram based on the distance matrix revealed that individuals from each population consistently clustered together and bifurcated into two distinct clades (or population groups) composed of the Han, Geum, Dongjin and Seomjin River populations and of the Nakdong and Katsura River populations, supported with high bootstrap values. The pairwise genetic differentiation ($F_{ST}$) estimates showed that the six populations were genetically well differentiated (P<0.01). The analysis of molecular variance (AMOVA) after partitioning the six populations into two population groups revealed very strong biogeographic structuring between them with 25.49% of total variance (P<0.01). Taken together, the AFLP markers clearly divided six A. lanceolatus populations into two population groups.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Investigation for Collapse Mode of Stiffened Curved Plate with Tee Shaped Stiffeners (티(Tee)형(型) 보강재로 보강된 곡판의 붕괴모드에 대한 검토)

  • Oh, Young-Cheol;Kim, Kyung-Tak;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • Ship are a box-shaped structure. It is used often fore and aft parts, bilge strake, deck with camber of ship structures. When this structure is compared with flat plate structure, it different to behaviour. Generally, if it subjected to axial compressive load, ultimate strength depend on the change of curvature. Also, In this paper, stiffened curved plate with 1/2+1+1/2 bay model subjected to compressive load carried out the elasto-plastic large deflection series analysis. and parameter effect considered slender ratio, web height/thickness as well as change of curvature and investigated collapse mode for analysis model.

Germ Cell Differentiations during Spermatogenesis and Taxonomic Values of Mature Sperm Morphology of $Atrina$ ($Servatrina$) $pectinata$ (Bivalvia, Pteriomorphia, Pinnidae)

  • Kang, Hee-Woong;Chung, Ee-Yung;Kim, Jin-Hee;Chung, Jae-Seung;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • The ultrastructural characteristics of germ cell differentiations during spermatogenesis and mature sperm morphology in male $Atrina$ ($Servatrina$) $pectinata$ were evaluated via transmission electron microscopic observation. The accessory cells, which contained a large quantity of glycogen particles and lipid droplets in the cytoplasm, are assumed to be involved in nutrient supply for germ cell development. Morphologically, the sperm nucleus and acrosome of this species are ovoid and conical in shape, respectively. The acrosomal vesicle, which is formed by two kinds of electron-dense or lucent materials, appears from the base to the tip: a thick and slender elliptical line, which is composed of electron-dense opaque material, appears along the outer part (region) of the acrosomal vesicle from the base to the tip, whereas the inner part (region) of the acrosomal vesicle is composed of electron-lucent material in the acrosomal vesicle. Two special characteristics, which are found in the acrosomal vesicle of A. ($S$) $pectinata$ in Pinnidae (subclass Pteriomorphia), can be employed for phylogenetic and taxonomic analyses as a taxonomic key or a significant tool. The spermatozoa were approximately $45-50{\mu}m$ in length, including a sperm nucleus (about $1.43{\mu}m$ in length), an acrosome (about $0.51{\mu}m$ in length), and a tail flagellum (about $46-47{\mu}m$). The axoneme of the sperm tail evidences a 9+2 structure.