• Title/Summary/Keyword: Marine reclamation construction

Search Result 53, Processing Time 0.025 seconds

Benthic Environment and Macrofaunal Community Changes During the Dike Construction in Saemangeum Subtidal Area, Korea (새만금 방조제공사로 인한 조하대 환경과 저서동물 군집 변화)

  • An, Soon-Mo;Lee, Jae-Hac;Woo, Han-Jun;Koo, Bon-Joo;Lee, Hyung-Gon;Yoo, Jae-Won;Je, Jong-Gil
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.369-383
    • /
    • 2006
  • The Saemangeum project is one of the biggest reclamation efforts in Korea and may cause coastal ecosystem change due to altered environments and habitat loss. Since February 2002, benthic environment and community structure in the Saemangeum studied area were studied to assess the influence of the project on macrofaunal community. The result of seasonal study from February, 2002 to August 2005 is reported here. Overall, changes of species numbers and dominant species of benthic animals in the periods before (1988) and after $(2002{\sim}2005)$ the Saemangeum dike construction were not evident both inside and outside the dike. However, local environmental and community change were noted The partial completion of Saemangeum dike $(4^{th}\;dike)$ in June 2003 altered water circulation and sediment deposition patterns both inside and outside the dike. Fine sediment was accumulated inside and outside the $4^{th}$ dike while coarse sediment dominated near the main channel (Sinsi gate). Benthic community resl)ended to the altered sediment type in these areas. Species number and diversity in both site was low compared to other sites. The dominant species in these areas were composed of the benthos that had not commonly occurred in the Saemangeum subtidal area.

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

A Quantitative Method for Estimating Damages in Fishery Production due to Artificial Environmental Deterioration in the Tidal Flat Fishing Grounds (천해어장에서 인위적 환경훼손에 의한 어업생산 감소량 추정방법)

  • PARK Joo Seok;KANG Yong Joo;ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.402-408
    • /
    • 2003
  • A quantitative method was suggested for estimating damages in fishery production due to the diffusion and deposition of suspended silt and clay by various construction processes in tidal flat fishing grounds. Marine populations are maintained through the process of spawning, growth, recruitment, natural death and death by fishing each year. All of the year classes of the population in a fishery ground could be affected when damages occur by human activities such as land filling or reclamation. The propose of this study is to calculate damages in terms of fishery production using a quantitative population dynamic method. If the maximum age in the population is $X_\lambda,$ the starting year of damage is $t_s,$ and the ending year of damage is $t_e,$ the number of year classes damaged is $t_{s-n\lambda}-t_e,$ Many year classes present in the year $t_s,$ and so if damages occur, they Influence all the year classes which are present in the population. Damaged year classes in year $t_e$ would still be in the population until the year $t_{e+n\lambda}$, where $n_{\lambda}$ is the oldest age class. If the expected yield of a year class is constant, the total yield from year classes in the fishing ground during the construction periods can be calculated as follows: $Y_\Phi=[(t_e-t_s+1)+n_c]{\cdot}Y_E+\sum\limits^{n_\lambda-n_c}_{l=1}\;\sum\limits^{n_\lambda-n_c}_{l=i}\;Y_{n_c+i}$ This method was applied for damage estimation in the production of Ruditapes philippinarum in a tidal flat fishing ground.

A Study on the Improvement of Discharge Capacity of Natural Fiber Drain (천연마섬유배수재의 통수능력 향상에 관한 연구)

  • 김지용;한상재;강민수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.279-284
    • /
    • 1999
  • Fiber drain(FD), which is made of organic fibers from jute and coir, has recently been used in several construction projects in the Southeast and East Asia region involving the soil improvement of reclamation fills overlying marine clay. FD is an environmentally friendly product that will naturally be biodegraded into soil after the completion of performance duration as a vertical drain. However, the conventional FD has limited and low-ranged discharge capacity compared to PVD. For this, in this study, the improvement of FD was attempted and new shaped FDs were evaluated by laboratory tests. A series of discharge capacity test was performed to investigate the functional applicability for several types of FDs.

  • PDF

A study for a hydrophilic environment creation (친수환경 조성을 위한 연구)

  • Shin, Moon-Seup;Lee, Dong-Joo;Yoo, Dae-Sung;Kang, Shin-Joong;Lee, Gun-Tak
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.690-694
    • /
    • 2005
  • It is necessary that the construction of submerged breakwater could minimize and compensate the negative effect on the marine environment and ecosystem caused by the Saemangeum reclamation. The important merit of this proposal is that the space between Saemangeum embankment and submerged breakwater is expected to become nursery ground for fish and shellfishes. The purpose of this study was investigated hydraulic characteristic of submerged breakwater to investigate the possibility of mitigation in the fisheries ground by hydraulic experiment.

  • PDF

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

Effect of PBD to improve soft marine sedimentary ground

  • Jeong, Jin-Seob;Hwang, Woong-Ki;Jeong, Choong-Gi;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • The effect of plastic board drains (PBDs)on ground improvement was checked out considering three crucial factors: ground settlement, undrained shear strength, and residual water head. First, the settlement analysis including initial settlement induced by reclamation of sand mat was conducted by back calculation analysis with measured data. Its result showed toot the PBDs used for this site worked well on improving soft ground. Secondly, the undrained shear strength was investigated by laboratory and in-situ tests including unconsolidated-undrained triaxial compression (UU) tests, unconfined compression tests, in-situ vane tests, and cone penetration tests. From the test results, they showed that the undrained shear strength of the improved ground by PBDs was significantly increased as well as the strength increasing ratio especially $10{\sim}15m$ below the ground surface on site. Thirdly, the residual water head measurement from the in situ dissipation test was found the same as the static water head, which indicated primary consolidation was completed and the effect of soil improvement with PBDs can be confirmed.

A Study on Environmental Impact Assessment Guidelines for Marine Environments in Harbor Construction Projects (항만건설사업의 해양환경 환경영향평가 가이드라인 개발 연구)

  • Maeng, Junho;Kim, Taeyun;Lee, Haemi
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.3
    • /
    • pp.141-160
    • /
    • 2022
  • The harbor construction projects can lead to various marine environmental problems including habitat degradation and loss, marine water pollution, change of flow patterns, erosion, scour, sedimentation, and so on. The EIA is a measure to prevent various environmental problems in advance from examining and minimizing the environmental impacts before the proposed developments are implemented. In addition, institutions reviewing EIA reports have made efforts to conduct scientific and standardized EIA by applying EIA guidelines for each project. This study aims to create a EIA guideline focusing on the harbor construction projects. Based on the review comments of the harbor construction EIA reports for the past 13 years (2009-2021) and the EIA guidelines of different types of projects, we identified the marine environmental problems and provided the appropriate guideline. This guideline summarizes and presents the contents which must be reviewed in the baseline condition survey, impact assessment, mitigation, and post-environmental impact investigation in the fields of marine fauna and flora, marine physics, and marine water and sediment quality. In the case of a baseline condition survey of marine fauna and flora, a method for selecting survey points considering the characteristics of sea area and project was presented. When estimating the impact of marine fauna and flora, we presented methods for predicting the impact on them due to the spread of suspended sediments and the damage to benthic habitats due to dredging and reclamation. In consideration of the characteristics of the sea area, we divided the survey items of the marine physics into essential items and supplementary items. In predicting the impact of marine physics, various methods for major issues such as seawater circulation, suspended sediment and bottom sediment transport, water temperature and salinity diffusion, seawater exchange, wave transformation, harbor tranquility, and shoreline change were presented. The research results will contribute to protect the marine environment by inducing more systematic and scientific surveys, impact assessments, and mitigation in the EIA process.

Estimation of Application on the Site of SRC Method for the Ground Reinforcement in Marine Clay (해성점토층에서 SRC 지반보강에 관한 현장적용성 평가)

  • Lee, Seungjun;Lee, Seogyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Currently, the west coast has focused on large-scale investment and development, such as harbor construction work and land reclamation projects, with soft ground grouting issues being the major concern. In addition, grouting for soft ground reinforcement is definitely considered that construction purpose, soil condition, construction situation, and construction costs. The SRC method, which is a high pressure injection method, can easily produce well-distributed strength regardless of soil characteristics and is environmentally friendly. Therefore in this study, the SRC method was applied to marine clay on the west coast where located Jeongok-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, Korea as well as estimated of the ground reinforcement and the application on the site. The results of the application on the site by SRC method indicated age 28 day strength is $14,700{\sim}31,800kN/m^2$ which is satisfied the criterion of unconfined compressive strength that more than $5,333kN/m^2$. Therefore the result that the SRC method constructed marine clay on the west coast indicated the outstanding strength as well as excellent durability.

Study on the enhancement of data quality from shallow water seismic reflection survey (천해저 지반조사를 위한 수면 탄성파 반사법 탐사자료의 분해능 향상 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.799-806
    • /
    • 2004
  • Recently, as the forerunner in establishing the Northeast Asia's logistics base, a lot of marine engineering works such as new ports and container terminals, extension of old ports, new bridges, land reclamation etc. have been progressed. Parallel to it, there is also an increasing demand for improving the safety of construction. In this situation, high resolution seismic reflection profiling can be well used, attempting to classify rocks and sediments under water, if possible, to delineate the distribution of grain sizes in sediments not only for calculating the cost of removing sediments from harbour's channels, but also for estimating the bearing capacities for bridge or port construction. However, the results from the corresponding reflection survey that has been in operation in our country can not be effectively used for engineering purposes mostly due to the insufficient resolution. Thus. in this paper, two innovative strategies are introduced to enhance resolution. The one deals with a newly designed exploration barge that will help reduce several kinds of noises encountered electrically or operationally. The other is associated with an establishment of optimum measuring system comprising e.g. a specially devised hydrophone with a combination of 7 piezoelectric elements. Field experiments performed at Busan harbour are illustrated. The quality of acquired data was thereby fundamentally improved in comparison with that obtained at the same time in a conventional way.

  • PDF