• Title/Summary/Keyword: Marine phytoplankton

Search Result 435, Processing Time 0.028 seconds

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -I . Estimating a Food Supply to Oysters Using an Eco-hydrodynamic Model in Geoie-Hansan Bay- (굴 양식수역의 환경용량 산정 -I. 생태계 모델을 이용한 거제 · 한산만 굴 먹이 공급량 추정)

  • Park Jong Soo;Kim Hyung Chul;Choi Woo Jeung;Lee Won Chan;Park Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.395-407
    • /
    • 2002
  • A 3D hydrodynamic-ecological coupled model was applied to estimate a food supply to oysters in Geoje-Hansan Bay where is one of the oyster culturing sites in Korea, In this study, the primary productivity (PP) was adopted as an index of food supply, and the spatial patterns of average chlorophyll a concentration during a culturing seasons from September to May of the following year were simulated by the model, The numerical result showed that PP was high in the inner part of the bay and the adjacent areas of Hwado island, but low in the outer. This result indicates that PP is essentially influenced by anthropogenic nutrient loadings in the system. The model was calibrated using the field data in May which is non culturing season of oysters and a simulated phytoplankton biomass agreed fairly well with the observed data ($R^{2}=0.70$, $RE=10.3\%$). The computed food supply varied from 0.19 to $1.27\;gC/m^{2}/day$ with a mean value of $0.62 gC/m^{2}/day$ from September to May. The highest value was showed in May ($1.27 gC/m^{2}/day$) and the lowest was in February ($0.19 gC/m^{2}/day$).

Phytohydrographic Plankton Studies during the First Half of the 20th Century in Korean Neritic Seas (20세기 전반 한국 근해역 플랑크톤의 식물수문학적 연구)

  • PARK, JONG WOO;KIM, HYUNG SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.483-494
    • /
    • 2019
  • From the cosmopolitan superiority of the as the first world map completed in 1402 with surprisingly detailed images and contents on the Africa Continent it is reasonable to think that the Koreans in early fifteen century were already with highly up-to-date perspectives on the universe and world history and cultures. However, some 490 year later the first phytohydrographic plankton investigation in the neritic seas of Korea was performed by a Japanese company with sampling points covering from Tokyo Bay through Jeju neritic waters to Shanghai estuary, which was in turn preceded by the first oceanographic investigation other than the simple mapping Koreans seas by using two French sailboats. The first phytohydrographic plankton investigation in Korean seas were behind the world first oceanic plankton exploration, the German Plankton Expedition, by 25 years. Starting from the oceanographic investigation including phytohydrographic samplings in the whole Yellow Sea in 1915 the full-scale phytohydrographic plankton studies were tried in Korean seas which is well represented by the 1921 oceanographic investigation on the whole East Sea with 80 sampling stations. In 1932 two separate oceanographic investigations followed, one in the East Sea where 78 stations from Busan to southern Sakhalin Island were simultaneously visited by 50 research vessels for the physical, chemical, and biological oceanographic studies, and the other one in southern coast and western East Sea of Korea where ocean current observation as well as plankton sampling were made in 120 stations to understand the relationship between the ocean current and plankton distribution in the region. In 1933-1934 more intensified investigations on phytohydrography were carried out particularly in the East Sea as an integral part of the basic marine ecosystem studies for the Myeong-Tae (Alaska Pollock) resources estimation. Scientists' attitude for the marine investigation and research activities seemed to be almost unchanging even to the year 1943, which could be reflected by the fact that publication of the results from the investigations performed in 1945 were finally done in 1967 at Tokyo. Some 70 years later from the mid-twenty century we might be standing on the turning-point of "need to be prepared" for the new era of changing paradigm by reviewing, archiving, and analyzing the prior information big data from the previous ocean observation and biohydrographic investigations. At the same time each professional societies for the above mentioned sciences might trigger a continuous project to reorganize and update the records on related bibliography and its history every 30 years.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Efficiency of concentrating marine microplanktonic organisms using net sampler to verify the efficacy of a ship's ballast water treatment system (USCG phase-II 선박평형수 처리장치 성능 평가에 대비한 해양식물플랑크톤 네트 농축효율 비교)

  • Baek, Seung Ho;Lee, Min Ji;Shin, kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2016
  • To provide a type approval test for Ballast Water Treatment System (BWTS) of United States Coast Guard (USCG) Phase-II, this study examined the concentrating efficiency of nets for ${\geq}10{\mu}m$ and ${\leq}50{\mu}m$ sized phytoplanktonic organisms using different mesh sized nets ($5{\mu}m$ or $7{\mu}m$), different injection methods (hand breaker as semi-continuous assessment or pump as continuous assessment), and different filterability for the water volume. As a result of the t-test, the net concentrated efficiency between $5{\mu}m$ and $7{\mu}m$ mesh size was not significant (p > 0.05). The difference in the net concentrated efficiency for filtered natural water volume was not significant (p > 0.05). On the other hand, the Chl.a concentration in the continuous water injection method was significantly (p < 0.05) higher than that of semi-continuous water injection (t-test: t: -4.058). In the natural phytoplankton community, a total of 36 species were identified, including Bacillariophyta (17 species), Dinophyta (15 species), Euglenophyta (1 species), Dictyochophyta (2 species), and unidentified taxa (1 species). Among them, diatom Pseudo-nitzchia spp. was remarkably dominant. In particular, the net concentrated efficiency in all assessments was underestimated to be approximately 20-25%, which was caused by the small size Pseudo-nitzchia spp.. A width size of these genus might have passed through the $5{\mu}m$ or $7{\mu}m$ mesh size of the net. Therefore, net concentrated efficiency is dependent on the size of the observed species in natural water. This issue should be considered when determining the net volume for the type approval test of BWTS.

Limiting Nutrient on Phytoplankton Growth in Gwangyang Bay (광양만에서 식물플랑크톤증식의 제한영양염)

  • Lee, Jae-Seong;Jung, Rae-Hong;Kim, Soung-Soo;Go, Woo-Jin;Kim, Kui-Young;Park, Jong-Soo;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2001
  • Salinity, DIN, DIP, DIN/DIP and indigenous algal assay were determined to estimate the limiting nutrient for phytoplankton growth in Gwangyang Bay, South Sea of Korea. Seawater samples were collected at surface and bot-tom water in 4 November 1999 (dry season) and 2 September 2000 (after heavy rain). In 4 November 1999, the salinity, DIN, DIP and DIN/DIP were 29.92 psu, 13.59 ${\mu}M$, 3.41 ${\mu}M$ and 4.14 respectively. In 2 September 2000, These values were 24.62 psu, 27.77 ${\mu}M$, 2.82 ${\mu}M$ and 9.79 respectively. The DIN and DIP concentrations in this study were higher than Deukryang, Yeoja and Gamak Bay, South Sea of Korea. Especially, DIP concentration was 8 times high compared to Deutryang, Yeoja and Gamak Bay. The main sources of nitrogen seem to be freshwater runoff from Somjin River and industrial wastewater. But, the main sources of phosphorus seem to be industrial wastewater around Gwangyang Bay. The limiting nutrient was nitrogen at all station in 4 November 1999. The limiting nutrient was also nitrogen in 2 September 2000 in spite of heavy rain observed because of relatively much volume of phosphorus sup-plied from point sources than nitrogen. In case of below 20 psu in salinity by heavy rain, the limiting nutrient willbe shift from nitrogen to phosphorus at some area of Somjin River estuary. But the limiting nutrient will be never shift to phosphorus throughout Gwangyang Bay, eastern coast of Yeoja and Dolsan because of much volume of phosphorus runoff from point source in coastal area of Gwangyang Bay.

  • PDF

Spatial Distributions and Monthly Variations of Water Quality in Coastal Seawater of Tongyeong, Korea (통영 주변 해역 수질의 공간분포 및 월 변화 특성)

  • Lee, Young-Sik;Lim, Weol-Ae;Jung, Chang-Su;Park, Jong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.154-162
    • /
    • 2011
  • Seawater quality was investigated each month at 30 stations near Tongyeong, South Korea, to provide data for the effective use of coastal fisheries and the reduction of economic damage to marine products. Water temperature was lowest in January and highest at the end of August. Neither extremely low water temperature below $4^{\circ}C$ nor fish damage caused by low water temperature was observed. Salinity ranged from 24.04 to 34.39 psu in the surface layer and from 29.92 to 34.39 psu in the bottom layer. The minimum salinity, attributable to rainfall events, was observed in July; salinity increased to high of about 34 psu in November. Low dissolved oxygen (DO), below 4 mg/L, was observed at Wenmun and Buksin Bays during May to October. Concentrations of $NO_2$-N, $NO_3$-N, and $PO_4$-P were low from March to September and high from October to February. Transparency was 6 m on average and was high in Wenmun Bay. Chemical oxygen demand (COD) and chlorophyll a (Chl. a) were high during summer, when the water temperature was high. With cluster analysis based on environment factors related to water quality, the study area could be divided into three main sea areas: Buksin Bay, coastal seawater, and offshore seawater. Buksin Bay was characterized by low salinity, high DO and Chl. a, and high transparency in the surface layer and by low DO and high $NH_4$-N in the bottom layer. Offshore seawater had high salinity and $NO_3$-N and low Chl. a concentration. In summer season that oyster need lots of phytoplankton, $NO_3$-N and Chl. a concentrations at this study area were low compare to Gwangy-ang and Gamak Bays. In winter, a sea squirt swallow much more than other season, the Chl. a concentrations were also low than Gwangyang and Gamak Bays.

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF

Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model (영양흐름모형을 이용한 1994년 신지도 해양생태계 해석)

  • Kang, Yun-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.180-195
    • /
    • 2011
  • A balanced trophic model for Sinjido marine ecosystem was constructed using ECOPATH model and data obtained 1994 in the region. The model integrates available information on biomass and food spectrum, and analyses ecosystem properties, dynamics of the main species populations and the key trophic pathways of the system, and then compares these results with those of other marine environments. The model comprises 17 groups of benthic algae, phytoplankton, zooplankton, gastropoda, polychaeta, bivalvia, echinodermata, crustacean, cephalopoda, goby, flatfish, rays and skates, croaker, blenny, conger, flatheads, and detritus. The model shows trophic levels of 1.0~4.0 from primary producers and detritus to top predator as flathead group. The model estimates total biomass(B) of 0.1 $kgWW/m^2$, total net primary production(PP) of 1.6 $kgWW/m^2/yr$, total system throughput(TST) of 3.4 $kgWW/m^2/yr$ and TST's components of consumption 7%, exports 43%, respiratory flows 4% and flows into detritus 46%. The model also calculates PP/TR of 0.012, PP/B of 0.015, omnivory index(OI) of 0.12, Fin's cycling index(FCI) of 0.7%, Fin's mean path length(MPL) of2.11, ascendancy(A) of 4.1 $kgWW/m^2/yr$ bits, development capacity(C) of 8.2 $kgWW/m^2/yr$ bits and A/C of 51%. In particular this study focuses the analysis of mixed trophic impacts and describes the indirect impact of a groupb upon another through mediating one based on 4 types. A large proportion of total export in TST means higher exchange rate in the study region than in semi enclosed basins, which seems by strong tidal currents along the channels between islands, called Sinjido, Choyakdo and Saengildo. Among ecosystem theory and cycling indices, B, TST, PP/TR, FCI, MPL and OI are shown low, indicating the system is not fully mature according to Odum's theory. Additionally, high A/C reveals the maximum capacity of the region is small. To sum up, the study region has high exports of trophic flow and low capacity to develop, and reaches a development stage in the moment. This is a pilot research applied to the Sinjido in terms of trophic flow and food web system such that it may be helpful for comparison and management of the ecosystem in the future.

Distribution of Nutrients and Chlorophyll α in the Surface Water of the East Sea (동해 표층수 중 영양염과 Chlorophyll α의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.87-98
    • /
    • 2016
  • During the period between July 3 and 27 of 2009, water samples were collected from the Russian coast at a depth of 30m from 26 stations (including Ulleung and Japan basins) onboard the Russian survey vessel R/V Lavrentyev following 4 lines (D, R, E, and A). The samples were analyzed for nutrients and chlorophyll a contents. All parameters exhibited higher values in warm waters than in cold waters ($NH_4:1.8-fold$, $PO_4:1.8-fold$, $SiO_2:1.2-fold$, and chlorophyll-${\alpha}$:1.9-fold), except nitrates, which was 1.4-fold higher in cold waters than in warm waters. The horizontal distribution of ammonia, phosphate, and chlorophyll-${\alpha}$ was very similar to each other and showed the highest values in the waters near Russia, where a upwelling influence of cold current and bottom water prevails, while relatively low distribution was observed at the Ulleung Basin. On the other hand, nitrates showed the highest concentration at the Ulleung Basin, which is under the direct influence of the Tsushima warm water, and showed a gradual decrease northward. The N/P ratio showed the highest value in the Tsushima middle water, rather than in the North Korean Cold Water, the Tsushima Warm Water was the primary source of nitrate flow into the East Sea. However, the average concentration of phosphate in the warm waters was < $0.2{\mu}M$, thereby limiting phytoplankton growth, while a high concentration of phosphate in cold waters showed a direct correlation with chlorophyll-${\alpha}$. The results of principal component analysis for the identification of primary factors that influence the marine environment showed that principal component I was water temperature and principal component II was influenced chlorophyll-${\alpha}$ and nutrients. Therefore, Study area has greatest influenced by water temperature, and clearly distinct cold and warm water regions were observed in the East Sea.

Rates and Controls of Organic Matter Mineralization and Benthic Nutrient Release in the Coastal Sediment Near Lake Shihwa (시화호 인근 연안 퇴적물의 유기물 분해 특성, 저층 영양염 용출 및 조절요인)

  • SHIN, JAE-HYUK;AN, SUNG-UK;CHOI, JAE-HOON;LEE, HYO-JIN;WOO, SEUNG-BUHM;HYUN, JUNG-HO;KIM, SUNG-HAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.110-123
    • /
    • 2021
  • We investigated geochemical constituents of pore-water and sediment, rates of organic carbon (Corg) oxidation and sulfate reduction (SR), and benthic nutrient flux (BNF) to elucidate characteristic of Corg oxidation and its control in the coastal area near Lake Shihwa. The study sites were selected in the vicinity of Soraepogu (E0), Songdo tidalflat (E1) and Oido dock (E3) and in front of floodgate Shihwa tidal plant (E5). The Corg contents in the sediments and concentrations of ammonium and phosphate in pore water exhibited the highest value at EO, and gradually decreased toward the outer sea (E1, E3, E5). Rates of anaerobic Corg oxidation (260.6 mmol C m-2 d-1) and SR (91.4 mmol S m-2 d-1) at E0 were 4-9 and 6-54 times higher than at the site of outer sea (E1, E3, E5). Rates of SR at E3 and E5 accounted for 11-23% of anaerobic Corg oxidation, whereas it comprised 47-70% of anaerobic Corg oxidation at E0 and E1. Rates of Corg oxidation and SR showed a highly positive correlation with the concentration of dissolved organic carbon (r2 = 0.795 and 0.777, respectively). The BNF at E0, E1, and E3 accounted for 120-510% and 26-178%, respectively, of the N and P required for primary production in the water column. Overall results suggest that the Corg oxidation in the sediment controlled by concentration of dissolved organic carbon in the pore water and the excessive Corg oxidation stimulates the benthic nutrient flux, which may cause a phytoplankton bloom in the water column.