• Title/Summary/Keyword: Marine meteorology

Search Result 102, Processing Time 0.021 seconds

Characteristics of Vertical Ozone Distributions in the Pohang Area, Korea (포항지역 오존의 수직분포 특성)

  • Kim, Ji-Young;Youn, Yong-Hoon;Song, Ki-Bum;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.287-301
    • /
    • 2000
  • In order to investigate the factors and processes affecting the vertical distributions of ozone, we analyzed the ozone profile data measured using ozonesonde from 1995 to 1997 at Pohang city, Korea. In the course of our study, we analyzed temporal and spatial distribution characteristics of ozone at four different heights: surface (100m), troposphere (10km), lower stratosphere (20km), and middle stratosphere (30km). Despite its proximity to a local, but major, industrial complex known as Pohang Iron and Steel Co. (POSCO), the concentrations of surface ozone in the study area were comparable to those typically observed from rural and/or unpolluted area. In addition, the findings of relative enhancement of ozone at this height, especially between spring and summer may be accounted for by the prevalence of photochemical reactions during that period of year. The temporal distribution patterns for both 10 and 20km heights were quite compatible despite large differences in their altitudes with such consistency as spring maxima and summer minima. Explanations for these phenomena may be sought by the mixed effects of various processes including: ozone transport across two heights, photochemical reaction, the formation of inversion layer, and so on. However, the temporal distribution pattern for the middle stratosphere (30km) was rather comparable to that of the surface. We also evaluated total ozone concentration of the study area using Brewer spectrophotometer. The total ozone concentration data were compared with those derived by combining the data representing stratospheric layers via Umkehr method. The results of correlation analysis showed that total ozone is negatively correlated with cloud cover but not with such parameter as UV-B. Based on our study, we conclude that areal characteristics of Pohang which represents a typical coastal area may be quite important in explaining the distribution patterns of ozone not only from surface but also from upper atmosphere.

  • PDF

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.