• Title/Summary/Keyword: Marine halophilic bacteria

Search Result 19, Processing Time 0.024 seconds

The Stability of Carotenoids Extracted from Halophilic Bacteria (호염세균으로부터 추출한 카로테노이드 색소의 안정성)

  • 정영기;최병대
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1405-1407
    • /
    • 1999
  • A carotenoid pigment, which was a determinant for food quality, was extracted from a marine halophilic bacteria. The stability of the pigment extract was investigated for a food additive. The optimum temperature for stability was 20oC. The pigment degradation was significantly affected by solvent polarity, however, stable in salvent methanol and ethanol. The pigment degradation was highly sensitive to light and UV exposure.

  • PDF

Preservation of Marine Heterotrophic Bacteria by Using a Deep-freezing Method

  • Park, Shin-Hye;Lee, Hyun-Sang;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.240-243
    • /
    • 2001
  • The effect of cryoprotectants and suspending solutions on the preservation of marine heterotophic bacteria was investigated. Six halotolerant and four halophilic bacterial isolates suspended in either distilled water or artificial seawater were preserved in glycerol and dimethylsulfoxide at -70$\^{C}$, respectively. After one year of preservation, the recovery rates on the appropriate agar plates were estimated. The survival rate was found to be dependent on the strain tested, regardless of the preservation conditions tested.

  • PDF

Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo islands (독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • To study the halobacterial diversity at the rhizospheric soil of coastal plant native to Dokdo islands, several host plant were selected and its rhizospheric soil was sampled. Soil sample was diluted serially and pure isolation was done by sub-culture using marine agar media. 26 halophilic strains cultivable at the marine medium containig concentration of 9.0% sodium chloride were selected among total 161 isolates. Their partial 16S rRNA gene sequences extracted from genomic DNA were analyzed and partially identified. Furthermore, to identify their genetic relationship, phylogenetic tree was deduced. Total 26 strains were belongs to Firmicutes (30.8%), Gamma proteobacteria (53.8%), Bacteroidetes (7.7%), Alpha proteobacteria (7.7%), and Actinobacteria (7.7%). These results showed the specific difference from previous researches which has been reported the microbial flora of soil or sea water around the Dokdo islands. Furthermore, 4 among 26 halophilic strains grew at above 12.0% NaCl concentrated marine broth, and 2 strains Idiomarina abyssalis LM4H23 and Halomonas huangheensis AS4H13 grew at 15.0% concentration. These halophilic strains thought to overcoming the severe stress like high salt concentration or variation derived from Dokdo-specific climate and might have unknown, specific relationship with their host coastal plant native to Dokdo islands.

The Membrane-Bound NADH:Ubiquinone Oxidoreductase in the Aerobic Respiratory Chain of Marine Bacterium Pseudomonas nautica

  • Lee, Young-Jae;Cho, Kyeung-Hee;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.225-229
    • /
    • 2003
  • Each oxidoreductase activity of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica was stimulated by monovalent cations including $Na^+,\;Li^+,\;and\;K^+$. In the presence of NADH or deamino-NADH as electron donors, $GH_2$ formation was approximately 1.3-fold higher in the presense of 0.08 M of $Na^+\;than\;K^+$, Whereas the other reductase activities were not significantly higher in $Na^+\;than\;K^+$. The optimal pH of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was 9.0 in the presence of 0.08 M NaCl. The activity of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was inhibited by about 33% with $60{\mu}M$ 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). The activity of NADH (deamino-NADH): ubiquinone-1 oxidoreductase was inhibited by about 32 to 38% with $80{\mu}M$ rotenone, whereas the activity was highly resistant to capsaicin. On the other hand, electron transfer from NADH or deamino-NADH to ubiquinone-1 generated a membrane potential (${\Delta}{\psi}$) which was larger in the presence of $Na^+$ than that observed in the absence of $Na^+$. The ${\Delta}{\psi}$ was almost completely collapsed by $5{\mu}M$ carbonylcyanide m-chlorophenylhydrazone(CCCP), and approximately 50% inhibited by $100{\mu}M$ rotenone, or $60{\mu}M$ 2-heptyl-4-hydroxyquinoline (HQNO). Also, HQNO made the ${\Delta}{\psi}$ very unstable. The results suggest that the enzymatic and energetic properties of the NADH:ubiquinone oxidoreductase of P. nautica are quite different, compared with those of other marine halophilic bacteria.

Isolation and characterization of acid-resistanct and halophilic bacteria using cultivation technique in Jeju island (배양기법을 활용한 제주도내 내산 및 호염성 미생물의 분리 및 특성 분석)

  • Han, Bit;Kim, Minji;Ryu, Dajung;Lee, Ki-Eun;Lee, Byoung-Hee;Lee, Eun-Young;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.248-257
    • /
    • 2019
  • In this study, we isolated about 70 bacterial strains from terrestrial and marine environments in Jeju island, and finally, total 21 strains were obtained based on the 16S ribosomal RNA gene sequence analysis. These isolated strains were classified into 16 genera of 5 classes and were identified as an unrecorded species in the Republic of Korea. As a result of the substrate utilization and capability for polymer degradation, the physiological phenotypes for acid resistance and halophilic bacteria were observed to be distinct from each other, except for some acid resistance strains. This study might provide basic information on utilization for indigenous microorganisms.

Isolation of Plasmids from the Moderately Halophilic Bacteria (Moderate 호염성 세균의 Plasmid 유전자 분리)

  • HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.557-562
    • /
    • 1985
  • Moderately halophilic bacteria were collected from solar salt with Larsen medium containing $10\%$ NaCl. A total of 56 strains were isolated and tested for the presence of plasmid DNA by agarose gel electrophoresis. Twelve isolates ($21\%$) carried at least one kind of plasmid. Six different isolates among them were selected to study the molecular weight of plasmids and the morphological and physiological characters. Vibrio sp. 14, Alcaligenes sp. 63, Pseudomonas sp. 11, Flavobacterium sp. 38, Bacillus sp. 16, and Alcaligenes sp. 52 carried at least one plasmid of about 7.2 kbp, 6.4 kbp, 6.85 kbp, 8.5 kbp, 8.75 kbp, and 6.8 kbp respectively.

  • PDF

$Na^{+}$-dependent NADH:quinone Oxidoreductase in the Respiratory Chain of the Marine Bacterium Marinomonas vaga

  • Kim, Young-Jae;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.391-396
    • /
    • 1996
  • The Gram-negative marine bacterium Marinomonas vaga, which requires 0.5 M NaCl concentration for optimal growth, is slightly halophilic. The growth of M vaga was highly resistant to the proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP) under alkaline pH conditions (pH 8.5) but very sensitive to CCCP under acidic pH conditions (pH 6.5). These results suggest that the respiratory chain-linked NADH oxidase system of M. vaga may lead to generation of a $Na^{+}$ electrochemical gradient. In order to examine the existence of $Na^{+}$-stimulated NADH oxidase in M. vaga, membrane fractions were prepared by the osmotic lysis method. The membrane-bound NADH oxidase oxidized both NADH and deamino-NADH as substrates and required $Na^{+}$ for maximum activity. The maximum activity of NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl. The site of $Na^{+}$-dependent activation in the NADH oxidase system was at the NADH:quinone oxidoreductase segment. The NADH oxidase and NADH:quinone oxidoreductase were very sensitive to the respiratory chain inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) in the presence of 0.2 M NaCl but highly resistant to another respiratory inhibitor, rotenone. Based on these findings, we conclude that M. vaga possesses the $Na^{+}$-dependent NADH:quinone oxidoreductase that may function as an electrogenic $Na^{+}$ pump.

  • PDF

Optimal Growth Conditions for Carotenoid Pigment Production from marine Microorganism (해양미생물로부터 카로테노이드 색소의 생산을 위한 최적조건)

  • 정영기;김태수;정명주;류병호;주우홍;박정욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1239-1243
    • /
    • 1999
  • The optimal medium composition for the production of carotenoid pigment from Haloarcular sp. EH 1 as a dietary for fishes were 1.0% sucrose, 1.0% yeast extract, 25% sodium chloride, 0.3% sodium citrate, 0.2% potassium chloride, 2.0% magnesium sulphate, 0.002% ferric sulphate(pH 7.0). The incubation temperate, aeration rate and agitation speed were 40oC, 100ml medium/500ml vol. shaking flask, and 180 rpm/min. The carotenoid pigment production was highest after 5 days of incubation with the light.

  • PDF

Study on the Hemolysin from Marine V. vulnificus (해양 V. vulnificus의 Hemolysin에 관한 연구)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.225-229
    • /
    • 1997
  • A halophilic V. vulnificus is an estuarine microorganism that has been associated with fatal wound Infection and life-threatening septicemia. Hemolysin is defined as toxic substance produced by various species of bacteria Including V. vulnificus. Hemolysin from marine V. vulnificus was purified and the effect of pH, temperature. metal ion on the activity of hemolysin, and thermostability of hemolysin were tested in this study. Hemolysin iysed the sheep red blood cell and the optimum pH was 8.0, the optimum temperature was 4$0^{\circ}C$, and $K^+$ increased but $Mn^{2+}$ decreased the hemolyic activity of hemolysin, but hemolysin was unstable to heat.

  • PDF

Optimization of the Production of an Immunostimulant from a Marine Bacterium (해양미생물로부터 면역증강물질의 생산 최적화)

  • 최혜정;정명주;정영기
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.759-764
    • /
    • 2002
  • A halophilic bacterium for the production of the immunostimulant was isolated from domestic marine, it was identified as Burkholderia sp. IS-203. The optimal conditions for the production of the immunostimulant were 1 % dextrose and 1 % yeast extract in artificial sea water for carbon and nitrogen sources, respectively. The initial pH and growth temperature for the prodution were 8.0 and $30^{\circ}C$ under the presence of oxygen, respectively.