• 제목/요약/키워드: Marine energy converters

검색결과 24건 처리시간 0.023초

직력 캐패시터를 가진 E급 공진형 정류기 설계에 관한 연구 (A Study on the Design of the Class E Resonant Rectifier with a Series Capacitor)

  • 김남호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.343-352
    • /
    • 1998
  • Higher frequency of energy transfer or at least energy conversion has to be used in order to reduce the size of inductors and capacitors required in the power supplies. Conventional PWM switching-mode power supplies have a limitation of operating frequency due to switching losses in the switching transistors and rectifier diodes. Means of reducing switching losses have been developed for high-frequency resonant amplifiers or more exactly dc/ac inverters. Because of smooth current and voltage waveforms resonant convertesrs havelower device switching losses and stresses lower electromagnetic interference(EMI) and lower noise than PWM converters. Therefore in this paper design equations of Classs E resonant low dv/dt rectifier with a series resonant capacitor drived using Fourier series techniques. The theory is compared with simulation results obtained for the rectifier operating at 10[MHz] ac input and 5[V] coutput.

  • PDF

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • 김문오;김창구;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF

Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-site for Marine Equipment

  • Park, Jin-Yeong;Baek, Hyuk;Shim, Hyungwon;Choi, Jong-Su
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.351-360
    • /
    • 2020
  • Of late, demand for test sites for marine equipment such as ASV, AUV, ROV, and various underwater sensors is increasing. The authors have focused on an oscillating water column (OWC), which is being constructed near Chagwido Island Jeju, as one of the test-sites. The main objective of the OWC is to produce wave energy and develop technologies. It has been built in the sea approximately 1 km off the coast. It has berth accommodation and some rooms that can be used as laboratories. To investigate the feasibility of its usage as a test site for marine equipment, we acquired bathymetric data around the OWC by using a multi-beam echo sounder and a single-beam scanning sonar. The accessibility of the OWC from nearby ports and the use of support vessels or ships were also investigated. 3D point cloud data from the multi-beam echo sounder and 2D acoustic images from the scanning sonar are expected to be used as references for identifying changes over time. In addition, through these experiments, we derived a procedure to use this facility as a test site by using the IDEF0 functional modelling method. Based on this preliminary investigation and previously reported examples, we determined the general conditions and preferences for evaluating the performance of various marine equipment heuristically. Finally, we developed five applications that were derived from this investigation.

파력발전용 가변수주진동장치의 운동에 대한 실험적 연구 (2. 다수 부유체) (Experimental study on motions of VLCO for wave power generation (2. Multiple floating bodies))

  • 이승철;구자삼
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.27-31
    • /
    • 2013
  • The structure of a variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system for absorbing the high kinetic energy of the accelerated motions of multiple floating bodies using an air-spring effect produced the installation of inner air chambers. Thus, a VLCO can improve the energy efficiency of the activating object type of wave energy converters made by the Pelamis Company. In this research, an experiment was performed in two cases: with the top valves closed and open. The floating bodies were connected by hinges. The effect of the internal flow was estimated by comparing the results for the closed and open valves.

백열전구 대체용 7w급 LED 램프의 드라이버 설계 (Design of the Driver of 7W Class LED Lamps as a Substitute for Incandescent Lamps)

  • 박영산;배철오
    • 해양환경안전학회지
    • /
    • 제16권2호
    • /
    • pp.235-240
    • /
    • 2010
  • 백열전구를 대체하기위한 친환경 에너지 절약형 7w급 LED 램프의 구동을 위한 전원장치를 설계하였다. LED 램프는 칩 LED를 여러개 직 병렬로 연결하여 사용하게 되므로 적합한 직류 전압과 전류를 공급하여야 한다. 그런데 LED 램프는 상용 AC 220V 전원에 직접 연결해 사용하게 되므로 드라이버에는 전압제어와 전류제어가 포함된 AC/DC, DC/DC 전력변환기가 반드시 필요하게 된다. 따라서 본 논문에서는 램프의 LED 열에 따라 출력전압과 전류제어가 가능하며 변압기가 없는 간단한 구조의 LED 램프 드라이버를 설계하였다.

Active Vibration Control of a Plate Using TMS320C6713DSK

  • Choi, Hyeung-Sik;You, Sam-Sang;Her, Jae-Gwan;Seo, Hae-Yong;Tran, Ngoc-Huy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.309-316
    • /
    • 2011
  • This paper deals with the experimental study of the vibration suppression of the smart structures. First, a new high-speed active control system is presented using the DSP320C6713 microprocessor. A peripheral system developed is composed of a data acquisition system, A/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers using PA 95 for fast data processing. Next, the processing time of the peripheral device is tested and the corresponding test results are provided. Since fast data processing is very important in the active vibration control of the structures, achieving the fast loop times of the control system is focused. The control algorithm using PPF in addition to FIR filter is implemented. Finally, numerous experiments were carried out on the aluminum plate to validate the superior performance of the vibration control system at different control loop times.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구 (Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration)

  • 김은수;오광명;박홍래
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.65-72
    • /
    • 2019
  • 한국정부는 재생에너지를 이용한 발전량 비중을 2030년까지 총 발전량의 20%까지 높이겠다는 목표를 제시하였다. 풍부한 해양 신재생에너지 자원은 한국정부가 이 목표를 달성하는데 중요한 역할을 할 수 있을 것이다. 이 논문은 1.0 m/s의 낮은 유속에서도 높은 효율을 달성할 수 있는 유동유발진동 현상을 이용한 조류에너지 발전기술을 소개하고 한국 7개 해안의 평균유속을 바탕으로 높은 효율을 달성할 수 있는 유동유발진동 발전기의 최적 설계를 제안하고자 한다. 또한, 이를 바탕으로 각 해안에서 발전할 수 있는 이론적 잠재량을 산정하고자 한다. 유동유발 발전기술을 이용한 연간 이론적 최대발전량은 221.77 TWh로 예측되었고 이는 2013년 한국의 총 전력소비량의 42.3%에 해당한다. 본 연구결과는 유동유발진동을 이용한 발전기술을 이용한 조류발전기술이 한국 정부가 제시한 목표를 달성하는데 중요한 역할을 할 수 있음을 보여준다.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구 (The study on substructure design and analysis for 5MW offshore wind turbine)

  • 선민영;이성범;이기열;문병영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1075-1080
    • /
    • 2014
  • 본 연구는 5MW급 해상풍력 하부구조물개발에 있어 설계에 필요한 다양한 해양환경 조건에 대하여 높은 안정성 확보가 요구되는 해상용 풍력발전 하부구조물과 관련, 구조물의 설계방법을 제시하고 그 안정성을 고찰하여 관련 기술 분야에 기여함을 목표로 한다. 특히, 5MW급 해상풍력발전 시스템에 대해 시험영역에서 큰 바람의 방향이 지속되고 있는 동안에 동시에 발달된 파도의 계산에 대한 정보를 제공한다. 그러므로 바람의 영역과 접근하는 파동 행열간의 관련성을 검토하여 강도, 방향 그리고 시간의 이동성을 계산할 수 있음을 확인하였다. 쇄파에서의 국부적인 압력분포를 물리적인 모델링과 수치적 모델링을 통해 조사하는 것이 가능하다. 해상 풍력 에너지 변환장치의 지지구조물들에 대해 최근 적용된 구조 및 피로에 대한 평가는 일반 설계규칙에 근거했다. 5MW 해상풍력 하부구조물은 제약조건이 많아 단일구조로 취급하는데 이는 생산에서 높은 안전계수를 고려해야함을 의미한다.