• 제목/요약/키워드: Marine diesel engines

검색결과 259건 처리시간 0.02초

선박디젤기관용 SCR 시스템의 NOx 저감율에 관한 연구 (Investigation of NOx Reduction Ratio on SCR System for a Marine Diesel Engine)

  • 최재성;조권회;이재현;이진욱;김정곤;양희성;고준호;박기용;장성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.832-838
    • /
    • 2003
  • IMO NOx levels are generally possible to meet by means of primary on-engine measures. Nevertheless further significant follow-on reductions are likely to require a secondary after-treatment technique. SCR system is currently the only available technology proven at full scale to meet the 90% NOx reduction levels. Accordingly, maybe the use of an SCR system on board ship provides the solution to minimize this primary pollutant without increasing fuel consumption. In order to develop a practical SCR system for marine application on board ship, a primary SCR system using urea was made. The SCR system was set up on the ship. employed a two-stroke diesel engine as a main propulsion. which is a training ship in KMU (Korea Maritime Univ.). The purpose of this paper is to report the results about the basic effects of the above system parameters which is investigated from practical application through its trial use. The degree of NOx removal depends on some parameters. such as the amount of urea solution added, space velocity. reaction gas temperature and activity of catalyst. The preliminary results from trial run are presented.

스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향 (Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 배명환;하태용;류창성;하정호;박재윤
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

고압 LPG/디젤연료의 분무특성 비교 (Comparison of LPG/Diesel Sprays in high Pressure Injection System)

  • 박권하
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.77-85
    • /
    • 2000
  • LPG gains many advantages of a high octane number low emissions and low cost over conventional fuel. The fuel has been naturally used in engines to save running cost but the first generation fuel feeding system was not satisfied with stringent requirement for exhaust emissions, A liquid direct injection system into a cylinder has been suggested as a next generation system to maximize a fuel economy as well as to reduce emissions. In this paper LPG sprays are compared with diesel sprays in a high pressured surrounding condition in order to understand the high pressure spray characteristics, The spray images show that LPG spray penetrates further soon after the injection then the sprays stays in a distant. it may explain the flashing effect of LPG.

  • PDF

대형저속 디젤엔진 구동 발전기의 출력변동 개선에 관한 연구 (Study on the Improvement of Output Fluctuation from Generator Driven by Large Size-Low Speed Diesel Engine)

  • 김영주;전효중;이돈출;이충기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.6-16
    • /
    • 1992
  • Since world-wide oil shock on 1970s, many large size-low speed diesel engines, instead of steam turbines, are used for the industrial electric power generating plants due to their economic advantage of low specific fuel consumption. But it is very important to control their electric power fluctuation problems for the purpose of smooth parallel operation with existing power plants. In this paper the fluctuation problem of KEPCO Nam-cheju No.1 generator driven by diesel ngine(B & W 7K 60MC, 13931x138.5RPM) is investigated with analysis of torsional vibration of which 4th harmonic component is related to its power fluctuation. The problem can be improved by modification of cylinder arrangement and flywheel position in reverse sequence, equalizing the combustion gas pressure of all cylinder and installation of torsional vibration damper enlarged 30%(Je=7287Kg.m$^{2}$) and high quality balancing of generator rotor.

  • PDF

중형 디젤엔진의 터보챠저 과급 시스템 최적화에 관한 연구 (A Research on the Optimization of Turbocharging System in a Medium Speed Diesel Engine)

  • 윤욱현;길상학;하지수;김호익;김주택;김기두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1138-1144
    • /
    • 2004
  • In order to improve engine performance while overcoming the weak points of Pulse and MPC(Modular Pulse Converter) turbocharging system, a new turbocharging system. "Hi-Pulse system", has been introduced and developed for medium speed diesel engine. HYUNDAI HiMSEN engines. Hi-Pulse system is to utilize not only the benefits of MPC system at higher load but also the ones of Pulse system at lower load. As for the results. the specific fuel oil consumption and NOx emission were lowered compared with the Pulse and MPC system. Performance simulation were carried out to optimize intake and exhaust timing and exhaust duct arrangement and to improve the performance of Hi-Pulse system engine.em engine.

원형 고무 세그먼트를 갖는 탄성커플링의 동특성과 적응성 (Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments)

  • 이돈출;로날드 디. 바로;김진경;남택근;유정대
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.346-351
    • /
    • 2011
  • Medium and high speed marine diesel engines with reduction gear have been widely used as prime mover in small car ferries and fishing vessels. The elastic coupling should be installed and complemented the propulsion shafting system to isolate the vibratory torque between engine and reduction gear. In this paper, the dynamic characteristics of elastic coupling with rubber type circular segments is confirmed by theoretical analysis using the FEM and the hydraulic excitation test at shop. Further adaptation was investigated with the torsional vibration test at diesel engine factory shop.

과급디젤기관의 성능시뮤레이션 프로그램개발 (Development of a Simulation Program for the Performance of Turbo-Charged Diesel Engines)

  • 최재성;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.97-103
    • /
    • 1994
  • This paper describes briefly the simulation program for predicting the performance of a high speed turbocharged four cycle diesel engine. The wave phenomena in the intake and exhaust systems are calculated by the characteristic method. The combustion process in the power cycle is represented by the heat release pattern which is given by the Wiebe's function or the pattern based on measured values. Turbocharger matching for the engine is described by utilizing the characteristic maps of both the compressor and turbine, which are obtained from quasi-steady states. A comparison of experimental and calculated results shows a good agreement. Then the influences of the intake system, the period of valve overlap and the characteristics of the turbine are numerically investigated by the simulation.

  • PDF

선체 마운트 지지점에서의 리셉턴스를 고려한 선박용 디젤 엔진의 고체전달음 해석 (Structure-borne Noise Analysis of Marine Diesel Engine Considering Receptance of Hull Structure at Mounting Point)

  • 장성길;정의봉;홍진숙;배수룡
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.120-128
    • /
    • 2011
  • This paper presents an efficient method to analyze noise and vibration of marine diesel engines mounted on flexible hull structure. The analysis model should in general include the hull structure, leading to lots of computational efforts. To minimize the computational efforts, in this paper, the transfer synthesis utilizing the receptance at the mounting points is proposed. The procedure is then verified by comparing the results with those from the full model calculation. The effects of flexible hull structure on the acoustic power from engine block are finally investigated. It is found that the effect of the hull is significant when the receptance of hull structure is similar to or greater than that of mount or engine block.

구리합금 나노분말을 혼합한 윤활제가 디젤기관의 축계안정성 및 토크에 미치는 영향 (The Effect of Lubricant Containing Copper Alloy Nano-powder on Shafting Stability and Torque of a Diesel Engine)

  • 박권하;김영남;김영일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.514-521
    • /
    • 2008
  • Many research works for improving a boundary lubrication performance have been executed by using solid lubricants, and been tried to apply an engine lubrication. However those general lubricants have not been applied on engines due to the extreme conditions such as very high temperature and pressure during combustion process in a cylinder. In this study a lubricant containing copper alloy nano-powder is applied on a diesel engine driven by an electric motor. Torques and shaft vibrations are measured, then an engine friction loss and rotating stability are assessed. The results show that the frequency of the vibration is about the same as that of a general lubricant, but the amplitudes in the both X and Y direction are reduced as well as the friction loss is reduced.