• Title/Summary/Keyword: Marine biomass

Search Result 636, Processing Time 0.023 seconds

Post-Reclamation Long-term Changes in Fish Species Composition of Beach Seine Samples in Cheonsu Bay (천수만 방조제 건설 후 대천 해빈 천해 어류의 중장기 종조성 변화)

  • Kwon, Soon Yeol;Hwan, Hak Bin;Hong, Ji Min;Lee, Tae Won
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.141-155
    • /
    • 2020
  • Species composition of fish in the shallow water at Daecheon beach was determined using monthly beach seine samples collected from April 2010 to March 2011. These data were compared with the previous data, one just after reclamation in 1984-1985, and the other in 1995-96, in order to assess the post-reclamation impact of the environmental change on the fish assemblage. A total of 30 species from 1,464 individuals with biomass of 17,808 g were identified. Dominant species in the number of individuals were Chelon haematocheilus (49.3%), Takifugu niphobles (13.7%) and Paralichthys olivaceus (10.0%). Among pelagic fish, migrant juvenile fish such as Sardinella zunasi and Thryssa kammalensis were abundantly collected in 1984-85, but the catch amount was gradually decreased as time untill only few pelagic fish were collected in 2010-2011. The benthic fish were most abundant in 1984-1985 among habitat groups, and Favonigobius gymnauchen and Kareius bicoloratus were the top two predominants. Species composition of benthic fish did not exhibited drastic changes in 1995-1996, but both the abundance decline and the species composition change was evident in 2010-2011. Among the semi-benthic fish from 1984-1985 samples, Sillago japonica and Konosirus punctatus predominated. Species composition was slightly changed in 1995-1996, but significant changes were met in 2010-2011 with the two predominats, Chelon haematocheilus and Takifufu niphobles. These changes in fish species composition may reflect the post-reclamation effect of the impaired water quality and the accumulation of organic rich fine sediments.

Optimal Growth Conditions for the Two Euryhaline Cyanobacterial Clones, Anabaena sp. CB-MAL21 and CB-MAL22 Isolated from Mankyeong Estuary, Korea

  • Kim, Young-Geel;Myung, Geum-Og;Yih, Won-Ho;Shin, Yoon-Keun
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.145-148
    • /
    • 2004
  • As a result of the 2-year monthly monitoring of the phytoplankton community at 3 stations in Mankyeong Estuary, Korea, we learned that cyan bacterial species of the genus Anabaena occurred at most sampling points with huge salinity differences (0.1-32.5 psu). We isolated several clones of Anabaena spp. from the monitoring stations, and screen out two euryhaline and nitrogen-fixing Anabaena clones, CB-MAL21 and CB-MAL22. The two clones were grown under various environmental gradients such as temperature (20, 30, 35 and 40$^{\circ}C$), salinity (0, 2, 5, 15 and 30psu), and $PO_4^{3-}$-P concentration (0, 1.6, 8.0, 40 and 200 ${\mu}M$M). Growth of CB-MAL21 and CB-MAL22 was measured by daily monitoring of chlorophyll fluorescence from each experimental culture for more than three serial transfers. Both the two experimental clones did not grow at 0psu. Maximal growth rates of the two clones were markedly reduced at lower $PO_4^{3-}$-P concentrations showing negligible growth at 0 and 1.6 ${\mu}M$M. However, growth of CB-MAL21 was not affected by low $NO_3^--$ concentration in culture media, showing the nitrogen-fixing ability. Maximum biomass yields of the two clones decreased dramatically at 35 and 40$^{\circ}C$. Optimal growth conditions for the two experimental clones were determined to be 20-30$^{\circ}C$, 40 ${\mu}M$M $PO_4^{3-}$-P, and wide salinity range from 5.0 to over 30psu. Best growth of CB-MAL21 was shown at (20$^{\circ}C$-15psu), which is less saline and cooler condition than those (i.e., 30$^{\circ}C$-30psu) for the best growth of CB-MAL22. The euryhaline and nitrogen-fixing CB-MAL21 strain thus can be a candidate laboratory culture for the future cyan bacterial marine biotechnology in temperate coastal waters.

Composition and Distribution of Phytoplankton with Size Fraction Results at Southwestern East/Japan Sea

  • Park, Mi-Ok
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.301-313
    • /
    • 2006
  • Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, $c_{1+2}$ (Chl a, Chl b, Chl $c_{1+2}$), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19'-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (B-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of $0.16-8.3\;{\mu}g/land$ subsurface chlorophyll maxima were observed at 0-10m at inshore and 30-50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature ($<18\;^{\circ}C$) but the enhanced Chi a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chi a from SeaWiFS, HPLC and fluorometric analysis showed that presence of Chi b cause underestimation of Chi a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.

Analysis of Tropospheric Carbon Monoxide over East Asia

  • Lee, S.H.;Choi, G.H.;Lim, H.S.;Lee, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.615-617
    • /
    • 2003
  • Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. The monthly average for CO shows a similar profile to that for O$_3$. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O$_3$ in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O$_3$ and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O$_3$, which tend to give the apparent summer minimums.

  • PDF

A Study of Ozone Photochemistry in Different Physico-chemical Properties of Air Masses around the Mexico City Metropolitan Area (MCMA) Using Aircraft Observations in 2006 (항공관측자료를 이용한 2006년 멕시코시티 주변 기류의 물리-화학적 성질에 따른 오존의 광화학적 특성 연구)

  • Song, Sang-Keun;Shon, Zang-Ho;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.118-136
    • /
    • 2010
  • Photochemical characteristics of ozone ($O_3$) and its precursors such as $O_3$ budget and $O_3-NO_x$-VOC sensitivity were analyzed in different physico-chemical properties of air masses around the Mexico City Metropolitan Area (MCMA) using aircraft observations during March 2006. The physico-chemical properties of air masses were categorized into 5 groups: boundary layer (BL), biomass burning (BB), free tropospheric continent (FTCO) and marine (FTMA), and Tula industrial complex (TIC). Results from the $O_3$ budget analysis indicated that $O_3$ production for BL, FTCO, and FTMA (for BB and TIC) was mainly controlled by a photochemical production pathway, a reaction of NO with $HO_2$ (with $RO_2$), while the main pathway of photochemical $O_3$ destruction for BL, FTCO, and FTMA (for BB and TIC) was a reaction of $HO_2$ with $O_3$ (of $H_2$ with $O^1$(D)). In addition, most of air mass categories (especially FTCO) were estimated to be $NO_x$-sensitive for $O_3$ production with lower $NO_y$, higher ratios of the other indicator species (e.g., $O_3/(NO_y-NO_x$), $H_2O_2/HNO_3$, etc.), and the lower removal rate of radicals ($\leq$0.5) by the reaction of OH with $NO_2$ than those of the VOC-sensitive condition.

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF) (갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산)

  • Nguyen, Trung Hau;Ra, Chae Hun;Park, Mi-Ra;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.529-534
    • /
    • 2016
  • Bioethanol was produced using the separate hydrolysis and fermentation (SHF) method with macroalgal polysaccharides from the seaweed, Undaria pinnatifida as biomass. This study focused on the pretreatment, enzymatic saccharification, and fermentation of yeasts in co-culture. Ethanol fermentation with 14.5% (w/v) seaweed hydrolysate was performed using the yeasts, Saccharomyces cerevisiae KCTC 1126 alone, Pichia angophorae KCTC 17574 alone, and their co-cultures with the yeasts either adapted to mannitol or not. Among the combinations, the co-culture of non-adapted S. cerevisiae and P. angophorae adapted to mannitol showed high bioethanol production of 12.2 g/l and an ethanol yield ($Y_{EtOH}$) of 0.41. Co-culture in the SSF process was employed in this study, to increase the ethanol yields of 35.2% and reduction of 33.3% in fermentation time. These results provide suitable information on ethanol fermentation with marine seaweeds for bioenergy production.

The Frequency and Length Dependence of the Target Strength of the Largehead Hairtail (Trichiurus lepturus) in Korean Waters

  • HwangBo, Young;Lee, Dae-Jae;Lee, Yoo-Won;Lee, Kyoung-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2009
  • The largehead hairtail (Trichiurus lepturus) is one of the most common fisheries stocks in the East China Sea and the Yellow Sea. The species is caught using a variety of fishing tools, such as a stow net or a long line, as well as jigging and trawling. Scientific investigations have been conducted throughout the world to enable evidence-based estimations for the management and protection of the main fisheries biomass. For example, inshore and offshore hydro acoustic surveys are performed annually using bottom- and mid-water trawls around the Korean Peninsula. However, to date, no acoustic survey has been conducted to estimate fish size distribution, which is necessary to construct a data bank of target strength (TS) relative to fish species, length (L), and frequency. This study describes the frequency and length dependence of TS among fishes in Korean waters for the purpose of constructing such a TS data bank. TS measurements of the largehead hairtail were carried out in a water tank (L 5 m$\times$width 6 m$\times$ height 5 m) at frequencies of 50, 75, 120, and 200 kHz, using a tethering method. The average TS patterns were measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down) to $+45^{\circ}$ (head up) every $0.2^{\circ}$. The length conversion constant ($b_{20}$) was estimated under the assumption that TS is proportional to the square of the length. In addition, in situ TS measurements on live largehead hairtails were performed using a split beam echo sounder.

Comparison of Species Composition and Seasonal Variation of Demersal Organisms Caught by Otter Trawl in the Coastal Waters off the Taean Peninsula, in the West Sea of Korea (서해 태안반도 연안에서 오터트롤에 채집된 저서생물의 종조성 및 계절변동)

  • Jeong, Gyeong-Suk;Cha, Byung-Yeul;Im, Yang-Jae;Kwon, Dae-Hyeon;Hwang, Hak-Jin;Jo, Hyun-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.264-273
    • /
    • 2014
  • To investigate species composition and seasonal variation of demersal organisms in the coastal waters off the Taean peninsula, otter trawl surveys were conducted from April 2010 to January 2011. A total of 75 species were collected, including 44 species of Pisces, 19 species of Crustacea, 6 species of Cephalopoda, 4 species of Gastropoda, and 1 species each of Bivalvia and Echinoidea. The dominant species in each season were Palaemon gravieri in spring, Charybdis bimaculata in summer, Loligo japonica in autumn, and Crangon hakodatei in winter. The number of species, individuals and biomass were highest in autumn and lowest in winter. The diversity index was highest in summer and lowest in winter. The dominance index was highest in winter and lowest in summer. The richness index was highest in autumn and lowest in winter. The evenness index was highest in summer and lowest in autumn. A cluster analysis showed that demersal organisms were divided into two groups; spring and winter organisms (Group 1) and summer and autumn organisms (Group 2). We detected a significant difference (P<0.05) between these groups, mainly owing to Platycephalus indicus, Repomucenus koreanus, and Paralichthys olivaceus within Pisces: Trachysalambria curvirostris, Metapenaeopsis dalei, P. gravieri, and C. hakodatei within Crustacea: and L. japonica within Cephalopoda.

The Characteristics of Phytoplankton Distributions Related to the Oceanographic Conditions in the Southern Waters of the Korean in Summer, 2004 (2004년 하계 남해안 해황과 식물플랑크톤의 분포 특성)

  • Oh, Hyun-Ju;Lee, Yong-Hwa;Yang, Jun-Hyuk;Kim, Seung-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.40-48
    • /
    • 2007
  • We analyze relation between phytoplankton and marine environment based on data such as water temperature, phytoplankton, zooplankton, nutrient collected from the southern coast of Korea in the summer, 2004. The water temperature range of the study area was $20.5{\sim}31.5^{\circ}C$ and there was formed a water temperature frontal zone from $20.5^{\circ}C$ to $25.0^{\circ}C$ in Geojedo southern coast and Geomundo island. Especially, high density of nutrients were shown in the southern coast of Geojedo in which water temperature frontal zone was formed strongly, the concentration of chlorophyll-a which is appeared at the highest rate among the phytoplankton pigments was shown more than $0.4{\mu}g/L$ in the inside of frontal zone and zooplankton biomass was than $500mg/m^2$ in that area.

  • PDF