• Title/Summary/Keyword: Marine benthic plants

Search Result 17, Processing Time 0.022 seconds

Effects of Heated Effluents on the Intertidal Macroalgal Community nearWolseong, the East Coast of Korea (동해안 월성원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.453-461
    • /
    • 2006
  • This study is intended to clarify the structure and seasonal dynamics of warm tolerant benthic marine algal community in Korea. The species composition and biomass of marine algae at the discharge canal of Wolseong nuclear power plant on the East Coast of Korea were investigated seasonally from February 2001 to October 2005. As a result, 43 species (6 blue-green, 8 green, 9 brown and 20 red algae) of marine algae were found at the discharge canal during the past five years. In general, the number of species observed was abundant during winter to summer and less in autumn. Lyngbya confervoides and Enteromorpha compressa always occurred at the discharge canal during the past five years, and Oscillatoria brevis, Padina arborescens and Caulacanthus ustulatus were common species found more than 80% frequency during the study period. Seasonal fluctuations of mean biomass were 2-659 g dry wt m–2 and dominant species in biomass were Caulacanthus ustulatus (contribution to a total biomass proportion 37%), Enteromorpha compressa (26%) and Padina arborescens (24%). Results showed that, in the floristic composition, the green algae occurred as common algal group at the discharge canal of Wolseong nuclear power plant. In the quantitative aspect, however, the red algae such as Caulacanthus ustulatus and Ahnfeltiopsis flabelliformis appeared as predominant group at the discharge canal, in contrast to Kori nuclear power plant where there was a definite green algal dominance. Differences in algal communities developed at the discharge canals of three nuclear power plants on the East Coast of Korea can probably be related to local environmental factors.

Characterization of macro-benthic fauna for ecological health status of the Fosu and Benya lagoons in coastal Ghana

  • Armah, Frederick A.;Ason, Benjamin;Luginaah, Isaac;Essandoh, Paul K.
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.279-289
    • /
    • 2012
  • This study conducted a comparative analysis of benthic macroinvertebrate communities in the Fosu and Benya lagoons in Ghana, based on the anthropogenic effect on the two lagoons. Salinity, oxygen, temperature, conductivity, turbidity and pH were measured, invertebrate richness and species densities were determined. The AZTI Marine Biotic Index (AMBI) and multivariate statistics were used to determine the different responses of fauna to pollution. The fauna were categorized into five ecological groups based on the degree of tolerance of the different species to pollution: disturbance-sensitive species; disturbance-indifferent species, disturbance-tolerant species, second-order opportunistic species; and first-order opportunistic species. The Fosu Lagoon supported more pollution tolerant species, whereas the Benya Lagoon had more species that were sensitive to organic enrichment under relatively unpolluted conditions. Chironomus sp., which is adapted to virtually anoxic conditions, was the most abundant in the Fosu Lagoon whereas Nemertea sp. was the most abundant in the Benya Lagoon. The numerical and relative abundance (%) of all 7 taxa in the Fosu Lagoon was 1,359 and 92.35%, respectively. The numerical and relative abundance (%) of all 34 taxa in the Benya Lagoon was 2,459 and 87.52%, respectively. Expectedly, the level of dissolved oxygen in the less saline Fosu Lagoon was higher than that in the more saline Benya Lagoon. The reduced photoperiod and photosynthetic activities of aquatic plants might account for this trend. There is a need to implement comprehensive monitoring and management initiatives for sustaining the ecological health of coastal lagoons in Ghana in order to support the many people that depend upon these ecosystems for their livelihood.

Environmental Impacts of Brine from the Seawater Desalination Plants (해수담수화 시설에서 생성된 농축수의 환경적 영향)

  • Park, Seonyoung;Seo, Jinsung;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • The need for seawater desalination is increasing in terms of securing various water resources, but few studies are available as for the environmental impact of hypersaline concentrated water (brine) discharged from desalination plants. Domestic studies are concentrated mainly on toxicity evaluation that phytoplankton, zooplankton larvae and green algae (Ulva pertusa) are negatively affected by concentrated water. The mortality of Paralichthys olivaceus showed a linear relationship with increasing salinity, and Oryzias latipes died 100% at concentrations above 60 psu. Foreign studies included monitoring cases as well as toxicity evaluations. The number of species decreased around the area where the concentrated water discharged. The hypersaline concentrated water affects the pelagic and benthic organisms. However, the fishes escaped when exposed to salinity, and the pelagic and benthic organisms resistant to salinity survived the hypersaline environment. The salinity limit and distance from the outlet was presented as the regulatory standard for bine discharge. There were differences in regulatory standards among country and seawater desalination plants, and these regulatory standards have been strengthened recently. In particular, California Water Boards were revised to ensure that the maximum daily salinity concentration does not exceed 2 psu above the ambient salinity level within 100 m of the outlet.

Biogeochemical Organic Carbon Cycles in the Intertidal Sandy Sediment of Nakdong Estuary (낙동강 하구 갯벌 사질 퇴적물에서 생지화학적 유기탄소순환)

  • Lee, Jae-Seong;Park, Mi-Ok;An, Soon-Mo;Kim, Seong-Gil;Kim, Seong-Soo;Jung, Rae-Hong;Park, Jong-Soo;Jin, Hyun-Gook
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • In order to understand biogeochemical cycles of organic carbon in the permeable intertidal sandy sediments of the Nakdong estuary, we estimated the organic carbon production and consumption rates both in situ and in the laboratory. The Chl-a content of the sediment and the nutrient concentrations in below surface pore water in the sandy sediment were lower than in the muddy sediment. The sediment oxygen consumption rates were relatively high, especially when compared with rates reported from other coastal muddy sediments with higher organic carbon contents. This implied that both the organic carbon degradation and material transport in the sandy sediment were enhanced by advection-related process. The simple mass balance estimation of organic carbon fluxes showed that the major sources of carbon in the sediment would originate from benthic microalgae and detrital organic carbon derived from salt marsh. The daily natural biocatalzed filtration, extrapolated from filtration rates and the total area of the Nakdong estuary, was one order higher than the maximum capability of sewage plants in Busan metropolitan city. This implies that the sandy sediment contributes greatly to biogeochemical purification in the area, and is important for the re-distribution of materials in the coastal environment.

Korean Species of Sargassum subgenus Bactrophycus J. Agradh(Sargassaceae, Fucales)with Key and Distribution

  • Lee, In-Kyu;Yoo, Soon-Ae
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.11-22
    • /
    • 1991
  • Early studies on Korean Sargassum subjenus Bactrophycus were partly started by Kyetzubg(1843,1849), J. Agardh(1889), Cotton(1906), Yendo(1907) and Okamura(1913, 1914, 1915, 1917). Kang(1966) reported 15 species and 4 subspecies of Sargassum subgenus Bactrophycus and their wide distribution on the Korean coasts in his paper [On the geographical distribution of marine algae in Korea], a foundation stone of Korean phycology. In fact, all the Korean coasts and subtidal zone are inhabited by Sargassum plants. They constitute the most part of the primary production and dominant species of benthic algal vegetation. In 1974, L.K. Lee began to study Sargassum monographically as seaweed resources in Korea. The Koreans eat some species of Sargassum (including Hizikia fusiformis) or use them as fertilizer of the farm near the coast. Among the reported 17 species of Korean Fucales, 12 species belong to Bactrophycus. Yoo(1976) dealt with the descriptions, figures, and a key of 24 species of Korean Fucales plants in her M.S. thesis paper. Among them 16 species belonged to Bactrophycus. Even though the above two works were done with thorough observation of the dry specimens kept in the Pusan Fisheries University Herbarium (most of them were identified by Kang, J.W.) and nation-wide collections, great morphological varieties of these taxa made Lee and Yoo hesitate to publish the paper. Instead, the serial chemotaxonomic studies on the geographical variations of Korean Fucales plants(Yoo and Lee, 1988a, 1988b ; Yoo, et al., 1988) were held to solve the problem, while foreign papers (especially both Drs Tseng's and Yoshida's serial works on Bactrophycus). and authenthic specimens that foreign scholors sent to Korean phycologists induced them to find that several species of Sargassum had been misidentified from the beginning. We introduce here Korean Sargassum subgenus Bactrophycus according to Tseng et al. (1985), mentioning briefly the characteristics of the species, key, and distribution on the Korean coasts.

  • PDF

Estimation for Seaweed Biomass Using Regression: A Methodological Approach (회귀분석을 이용한 해조류 생물량 측정을 위한 방법론)

  • Ko, Young-Wook;Sung, Gun-Hee;Kim, Jeong-Ha
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • To estimate seaweed biomass or standing crop, a nondestructive sampling can be beneficial because of not much destroying living plants and saving time in field works. We suggest a methodological procedure to estimate seaweed biomass per unit area in marine benthic habitats by using species-specific regression equations. Percent cover data are required from the field samplings for most species to convert them to weight data. However, for tall macroalgae such as kelps we need density data and their size (e.g., size class for subtidal kelps) of individuals. We propose that the field sampling should be done with 5 replicates of 50 cm x 50 cm quadrat at three zones of intertidals (upper, middle, lower) and three depth points (1, 5, 10 m) in subtidals. To obtain a reliable regression equation for a species, a substantial number of replicate is necessary from destructive samplings. The regression equation of a species can be further specified by different locality and different season, especially for the species with variable morphology temporally and spatially. Example estimation carried out in Onpyung, Jeju Island, Korea is provided to compare estimated values with real weight data.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.